

PROSIMPLUS APPLICATION EXAMPLE

SIMULATION OF A PLATE HEAT EXCHANGER USED TO COOL A SUCROSE SOLUTION WITH CO-PROSIM PHE CAPE-OPEN UNIT OPERATION

EXAMPLE PURPOSE

This example shows a two-fluid plate heat exchanger used to cool a solution of sucrose (60° Brix) with water. This counter-current heat exchanger has two passes on both sides. Each pass is counter-current. Pure sucrose component is modified to represent the thermal and transport properties of the sucrose solution (60° Brix).

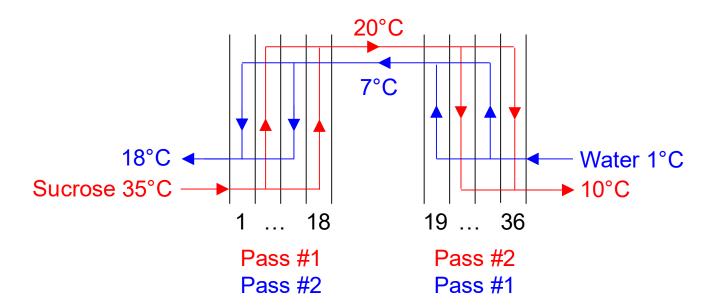
This heat exchanger is modeled using CO-ProSim PHE, Fives ProSim's CAPE-OPEN unit operation dedicated to the simulation of plate heat exchangers. CO-ProSim PHE can take into account the effect of the stacking and of the pressure drop on the enthalpy curves. In this example, the CO-ProSim PHE unit operation runs inside the ProSimPlus environment, *i.e.*, within the ProSimPlus simulation software where the thermodynamic and physico-chemical data needed are automatically calculated using Simulis Thermodynamics, the thermodynamic calculation server of ProSimPlus.

Access	Free Internet	Restricted to clients	Restricted	☐ Confidential
CORRESPONDING PROSIMPLUS FILES		COPROPHE_EX_EN-Sucrose-co	ooling.pmp3	

Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. Fives ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example.

Energy

TABLE OF CONTENTS


1.	PRO	CESS MODELING	3
	1.1.	Process description	3
	1.2.	Process flowsheet	4
	1.3.	Compounds	5
	1.4.	Thermodynamic model	6
	1.5.	Operating parameters	6
		1.5.1. Process feeds	6
		1.5.2. Plate heat exchanger	6
		1.5.3. Measurement unit operations	12
	1.6.	Initializations	12
2.	RES	ULTS	13
	2.1.	Mass and energy balances	13
	2.2.	Plate heat exchanger profiles	14
3.	REFI	ERENCES	15

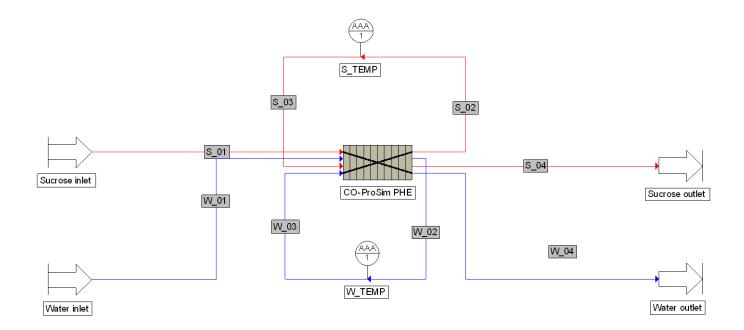
Version: March 2025 Page: 3 / 15

1. Process modeling

1.1. Process description

In this example a plate heat exchanger is used to cool a solution of sucrose (60° Brix) with water. The hot stream is the sucrose solution and the cold stream is the water stream. This is a counter-current heat exchanger with two passes on both sides. Each pass is counter-current and has 18 passages (9 for each fluid). Its scheme is shown in the figure below. This example is built form [GUT03].

In this example, the CO-ProSim PHE CAPE-OPEN unit operation is used within the ProSimPlus simulation environment and the Simulis Thermodynamics calculation server for thermophysical properties and phase equilibria calculations is used.


Version: March 2025 Page: 4 / 15

1.2. Process flowsheet

The process flowsheet is represented below. A unique CO-ProSim PHE CAPE-OPEN unit operation is used to model in the same module the two passes of the heat exchanger.

The hot sucrose solution enters in the heat exchanger by the stream "S_01". The stream "S_02" leaving the unit operation is the sucrose solution outlet of the pass #1. As in ProSimPlus simulation environment it's not allowed to connect directly an outlet of a unit operation to an inlet of the same unit operation, a measurement unit operation, "S_TEMP", is used to allow this connection as two streams are then used. Thus, the streams "S_02" and "S_03" are the connection from the pass #1 and the pass #2 on the sucrose side, "S_03" being the entering stream of the pass #2. Finally, the cooled sucrose solution leaves the heat exchanger by the stream "S_04".

The water follows an analogous path.

Version: March 2025 Page: 5 / 15

1.3. Compounds

The compounds in the simulation, their chemical formula and CAS numbers are shown in the following table. Water pure component properties are extracted from the standard database provided with ProSimPlus [ROW23].

Compound	Chemical formula	CAS number ¹
Water	H ₂ O	7732-18-5
Sucrose 60° Brix	-	55000-01-6

The sucrose solution (60° Brix) was created from the sucrose compound (CAS number¹: 57-50-1) available in the standard database provided with ProSimPlus [ROW23]. The properties modified to model the thermal and transport properties of a sucrose solution (60° Brix) are:

✓ IUPAC name: Sucrose 60° Brix

✓ CAS number¹: 55000-01-6

✓ Liquid specific heat [GUT03]:

$$Cp_L = 4.803T + 2696 \quad (J.kg^{-1}.K^{-1})$$

 $0 \le T \le 100^{\circ}C$

✓ Ideal gas specific heat:

$$Cp_G = Cp_L$$

√ Vaporization enthalpy:

$$\Delta H_{vap} = 0$$

✓ Liquid density [GUT03]:

$$\rho_L = -1.451 \times 10^{-3} T^2 - 0.4281 T + 1296 \ (kg.m^{-3})$$

$$0 \le T \le 60^{\circ} C$$

✓ Liquid dynamic viscosity [GUT03]:

$$log\mu_L = -4.513 + \frac{421.8}{T + 108.5}$$
 (Pa.s)
 $0 \le T \le 80^{\circ}C$

✓ Liquid thermal conductivity [GUT03]:

$$\lambda_L = -3.696 \times 10^{-6} T^2 + 1.201 \times 10^{-3} T + 0.3825 \quad (W.m^{-1}.K^{-1})$$

$$0 \le T \le 80^{\circ} C$$

Copyright © 2025 Fives ProSim, Labège, France – All rights reserved

¹ CAS Registry Numbers® are the intellectual property of the American Chemical Society and are used by Fives ProSim SAS with the express permission of ACS. CAS Registry Numbers® have not been verified by ACS and may be inaccurate.

1.4. Thermodynamic model

As both sides of the heat exchanger are liquid streams modeled with pure component (water on cold side) and pseudo-component (sucrose on hot side), the "Ideal" thermodynamic profile is selected.

1.5. Operating parameters

1.5.1. Process feeds

	Hot stream	Cold stream
Temperature (°C)	35	1
Pressure (bar)	2	1.2
Total flow rate (kg/s)	1.3	1.3
Mole fractions		
Sucrose 60° Brix	1	0
Water	0	1

1.5.2. Plate heat exchanger

√ General parameters

Parameters	Value
Type of exchanger	CO-ProSim PHE
Number of bodies	1
Orientation	Vertical
Used width (cm)	23.6
Thickness of the plates (mm)	0.7
Material	
Туре	Other
Name	Stainless steel
Thermal conductivity (W/m/K)	17

Page: 7 / 15

✓ Streams parameters

Version: March 2025

		Stream		
	Sucrose solution Inlet pass #1	Water Inlet pass #1	Sucrose solution Inlet pass #2	Water Inlet pass #2
Name	Hot	Cold	Hot2	Cold2
Color				
Flow direction	From bott	om to top	From top	to bottom
Fouling factor (W/m²/K)	11 627.90698	58 823.52941	11 627.90698	58 823.52941
Heat exchange correlation		GRETh plate	es and frames	
Generation of physico- chemical properties			ated by the thermodyr imulis Thermodynami	
Pressure effect on enthalpy curves	Not taken into account			
Other parameters Default values				

The name and the color will be used to well recognize each stream in the later part (reference layer and stacking description).

✓ Plates characteristics

The correlations proposed by [WAN95] is available in ProSim PHE to compute the Colburn and Fanning coefficients. In this example, to compare ProSim PHE results with the ones of [GUT03], the correlations of [GUT03] will be used instead of the one of [WAN95] in the form of tabulated values. Due to the differences in the Reynolds number between the two sides, two plates are specified (one for each side).

Name	Hot plate	Cold plate	
Reference	1001	1002	
Calculation mode	Performance data provided		
Туре	Corrugated plate		
Corrugation height (mm)	2.7		
Corrugation angle (°)	45		
Plate area enlargement factor			
Туре	Supplied		
Value	1.17		
Other parameters	Default values		

The performance data of the two plates are listed in the following table.

	Hot plate			
Reynolds number	Fanning coefficient	Colburn coefficient		
1	18.290000	0.400000		
4	7.407482	0.229104		
7	5.142920	0.182949		
10	4.075808	0.158511		
13	3.434968	0.142644		
16	3.000043	0.131221		
19	2.682047	0.122462		
22	2.437553	0.115453		
25	2.242626	0.109670		
28	2.082892	0.104786		
31	1.949153	0.100585		
34	1.835226	0.096918		
37	1.736785	0.093679		
40	1.650709	0.090789		
43	1.574680	0.088187		
46	1.506939	0.085828		
49	1.446125	0.083676		
52	1.391168	0.081701		
55	1.341211	0.079879		

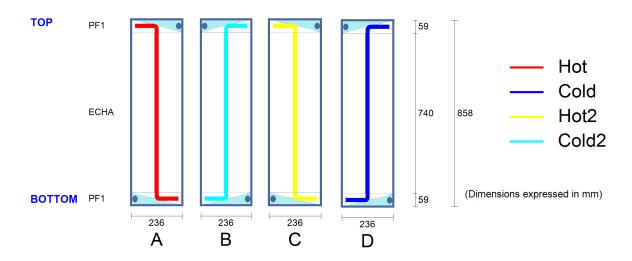
Cold plate				
Reynolds number	Fanning coefficient	Colburn coefficient		
100	0.558038	0.063551		
200	0.483784	0.050312		
300	0.445017	0.043887		
400	0.419411	0.039832		
500	0.400568	0.036946		
600	0.385802	0.034744		
700	0.373744	0.032986		
800	0.363603	0.031534		
900	0.354887	0.030307		
1000	0.347267	0.029250		
1100	0.340516	0.028325		
1200	0.334467	0.027507		
1300	0.328997	0.026775		
1400	0.324012	0.026114		
1500	0.319440	0.025514		
1600	0.315221	0.024965		
1700	0.311309	0.024460		
1800	0.307665	0.023994		
1900	0.304257	0.023560		

Version: March 2025 Page: 9 / 15

√ Reference passages

The characteristics of the distributors are displayed in the following table.

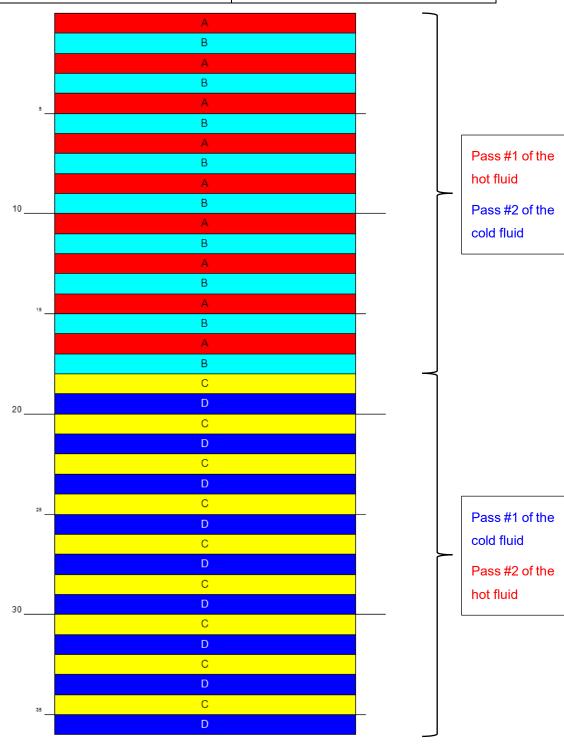
	Distributor characteristics			
Reference layer	Α	В	С	D
Distributor type	PF1			
Block height (mm)	59			
Main plate	Hot plate Cold plate Hot plate Cold plate			
Roughness				
Туре	Absolute			
Value (mm)	0			
Port geometry	Circular			
Port diameter (mm)	59			
Stream	Hot Cold2 Hot2 Cold			Cold
Other parameters	Default values			



To make a comparison with [GUT03] results, it's assumed that the distributor block height is equal to their port diameter.

The plates used for the heat exchange zone are shown in the table below:

	Heat exchange zone characteristics			
Reference layer	Α	A B C D		
Block height (mm)	740			
Main plate	Hot plate Cold plate Hot plate Cold plate		Cold plate	
Stream	Hot	Cold2	Hot2	Cold


The following figure shows the four reference passages of the heat exchanger.

Version: March 2025 Page: 10 / 15

✓ Stacking

Parameters	Value
Sequence 1	
Number of repetitions of the sequence	9
Sequence	АВ
Sequence 2	
Number of repetitions of the sequence	9
Sequence	C D

Version: March 2025 Page: 11 / 15

✓ Number of meshes for each elementary zone

(Dilliensions expressed in min)

√ Numerical parameters

In CO-ProSimPlus PHE, the heat transfer coefficients for the distributors are set by default at 20% of the ones corresponding to the heat exchange plate of the same characteristics. In this example, to make a comparison with the results of [GUT03], this parameter is set to zero: i.e. the thermal performances of the distributors are not taken into account in the example.

Version: March 2025 Page: 12 / 15

1.5.3. Measurement unit operations

As in ProSimPlus simulation environment it's not allowed to connect directly an outlet of a unit operation to an inlet of the same unit operation, measurement unit operations are used to allow this connection as two streams are then used. They are configured here to give the deviation with the temperature between the two passes reported by [GUT03].

	Parameter			
Stream	Sucrose solution	Water		
Measurement	Temperature			
Set point (°C)	20	7		

1.6. <u>Initializations</u>

The calculation sequence is automatically determined by ProSimPlus. Two tear streams are detected: "S_03" and "W_03", i.e. the streams linking the two passes of the heat exchanger. The following initializations are used in the simulation.

	S_03	W_03			
Temperature (°C)	20	7			
Pressure (bar)	2	1.2			
Total flow rate (kg/s)	1.3	1.3			
Mole fractions					
Sucrose 60° Brix	1	0			
Water	0	1			

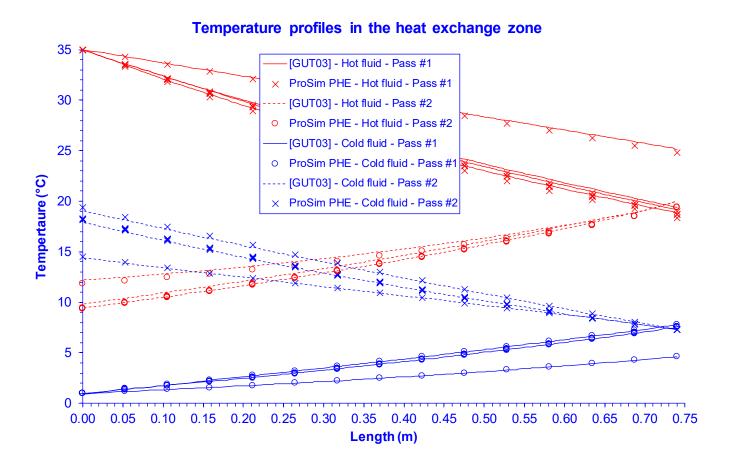
Version: March 2025 Page: 13 / 15

2. RESULTS

2.1. Mass and energy balances

This document presents only the most relevant stream results. In ProSimPlus, mass and energy balances and transport properties are provided for all streams. Stream results are also available at the unit operation level ("Stream" tab in the configuration window).

Streams		S_01	S_03	S_04	W_01	W_03	W_04
Total flow (mass)	kg/h	4680	4680	4680	4680	4680	4680
Mass fractions							
WATER		0	0	0	1	1	1
Sucrose 60° Brix		1	1	1	0	0	0
Physical state		Liquid	Liquid	Liquid	Liquid	Liquid	Liquid
Temperature	°C	35	19.378	9.5832	1	7.2791	17.954
Pressure	bar	2	1.5509	1.117	1.2	1.0431	1.0578
Enthalpic flow	kW	36.921	-20.481	-55.697	-3293.1	-3258.7	-3200.4
Molar vapor fraction		0	0	0	0	0	0


The following table shows that ProSim PHE gives similar results as the ones of [GUT03].

	[GUT03]	ProSim PHE			
Outlet temperature (°C)					
Hot fluid (sucrose 60° Brix)	10.0	9.6			
Cold fluid (water)	17.7	18.0			
Temperature between passes (°C)					
Hot fluid (sucrose 60° Brix)	20.0	19.4			
Cold fluid (water)	7.6	7.3			
Pressure drop (bar)					
Hot fluid (sucrose 60° Brix)	0.814	0.883			
Cold fluid (water)	0.211	0.142			

Version: March 2025 Page: 14 / 15

2.2. Plate heat exchanger profiles

Several profiles (wall temperature, fluid temperature, pressure, heat transfer coefficient, vaporization ratio...) in the heat exchanger are available after the simulation, from the ProSim PHE edition window ("Results" tab). The following figure shows that ProSim PHE gives similar temperature profiles in the heat exchange zone (distributor not represented in this figure) as the ones of [GUT03] for each passage of each pass for both sides.

Version: March 2025 Page: 15 / 15

3. References

[GUT03] GUT J.A.W., PINTO J.M., "Modeling of Plate Heat Exchangers with Generalized Configurations", Int. J. Heat Mass Trans., 46, 2571-2585 (2003)

[ROW23] ROWLEY R.L., WILDING W.V., OSCARSON J.L., GILES N.F., "DIPPR® Data Compilation of Pure Chemical Properties", Design Institute for Physical Properties, AIChE (2023)

[WAN95] WANNIARACHCHI A.S., RATNAM U., TILTON B.E., DUTTA-ROY K., "Approximate Correlations for Chevron-Type Plate Heat Exchangers", 30th National Heat Transfer Conference, Vol. 12, HTD Vol. 314, ASME, 145-151 (1995)