

PROSIM DAC APPLICATION EXAMPLE

TSA PROCESS

DICHLOROMETHANE ADSORPTION ON ACTIVATED CARBON

EXAMPLE PURPOSE

This example deals with a TSA process (Thermal Swing Adsorption) in which dichloromethane is adsorbed on an activated carbon. The thermal regeneration of the activated carbon is done by a hot nitrogen stream. This process is modeled within ProSim DAC, ProSim's dynamic simulation software dedicated to gas adsorption columns.

|--|

CORRESPONDING PROSIMPLUS FILES

PSPDYN_EX_EN-VOC-TSA.pmp3

Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. Fives ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example.

Energy

Fives ProSim

Siège social : Immeuble Stratège A - 51 rue Ampère - 31670 Labège - FRANCE Tél. : +33 (0)5 62 88 24 30 S.A.S. au capital de 147 800 € - 350 476 487 R.C.S. Toulouse - Siret 350 476 487 00037 - APE 5829C - N° TVA FR 10 350 476 487 www.fivesgroup.com / www.fives-prosim.com

TABLE OF CONTENTS

1.	PROC	ESS MODELING	3				
	1.1.	Process description	3				
	1.2.	Process flowsheet	4				
	1.3.	3. Compounds					
	1.4.	Thermodynamic model	4				
	1.5.	Operating parameters	5				
		1.5.1. Process feeds	5				
		1.5.2. Simulation time	5				
		1.5.3. Adsorption column	5				
2.	RESU	LTS	18				
	2.1.	Simulation report of the adsorption column	. 18				
	2.2.	Profiles of the adsorption column	. 19				
	2.3.	Profiles of the outlet stream	. 20				
3.	REFE	RENCES	22				

1. PROCESS MODELING

1.1. Process description

ProSim DAC is a dynamic simulation software based on mass and enthalpy balances dedicated to gas-solid adsorption columns. The adsorption and the regeneration steps can be modeled. The available types of regeneration are: thermal regeneration (co- or counter-current), steam regeneration (co- or counter-current) and pressure regeneration. The TSA (Thermal Swing Adsorption), PSA (Pressure Swing Adsorption) or VTSA (Vacuum Thermal Swing Adsorption) processes can be represented. A management system of events allows going from one step to another depending on criterions specified by the user (duration, breakthrough ratio, concentration...). An end simulation time or a number of cycles can be defined. The characteristics (temperature, pressure, flow rate, compositions) of the feeds (flow to be purified, regenerating flows...) can be constant or time dependent. The main models of adsorption isotherm (Langmuir, Toth, Dubinin-Radushkevich, Langmuir extended, Sips...) are available. The mass and heat transfer coefficients can be specified by the user or calculated by ProSim DAC. A data base of activated carbons and of adsorption isotherms of VOCs on activated carbons is available. An economical balance of the regeneration steps can be performed to compare different solutions.

In this example, dichloromethane is adsorbed on an activated carbon. The regeneration of the adsorbent is done by a hot pure nitrogen stream (TSA process). The regeneration flow is counter-current compared to the adsorption flow.

Two inlet streams are used in this example: the "VOC" stream and the "Hot_N2" stream. During the adsorption step only the "VOC" stream is used. This stream is the gas stream to be purified (i.e. in which the dichloromethane has to be removed). During the regeneration step only the "Hot_N2" stream is used. This stream is the hot nitrogen stream used to regenerate the bed of adsorbent. The sequence of the steps is done automatically thanks to the definition of events ending the different steps.

The parameters of the column (size, thermal behavior...), the adsorption isotherms, the type of the cycle (TSA, VTSA, PSA), the step events (breakthrough level, temperature, concentration...) are defined within the "Adsorption column" unit operation module.

This example is adapted from [RAM11].

1.2. Process flowsheet

1.3. <u>Compounds</u>

The compounds used in the simulation, their chemical formula and CAS Registry Numbers^{® 1} are shown in the following table. Their pure component properties are extracted from the standard data base provided with ProSim DAC [ROW11].

Compound	Chemical formula	CAS number
Dichloromethane	CH ₂ Cl ₂	75-09-2
Nitrogen	N ₂	7727-37-9

1.4. Thermodynamic model

The adsorption and the regeneration are done at the atmospheric pressure and at temperature below 140°C. Thus the "Ideal" thermodynamic profile is selected in the Simulis Thermodynamics calculator.

¹ CAS Registry Numbers[®] are the intellectual property of the American Chemical Society and are used by Fives ProSim SAS with the express permission of ACS. CAS Registry Numbers[®] have not been verified by ACS and may be inaccurate.

1.5. **Operating parameters**

1.5.1. Process feeds

	VOC stream	Hot nitrogen stream
Temperature (°C)	24	170
Pressure (atm)	1	1
Total flow rate (kmol/h)	0,08399	0,0536
Mole fractions		
Dichloromethane	0,0078	0
Nitrogen	0,9922	1

1.5.2. Simulation time

The "Final time" is the real working duration of the process (adsorption + thermal regeneration in this example). The "Delta" is the duration during which the "Adsorption column" module is working. As only one module is present, the "Final time" and the "Delta" should be identical. These two values are specified in the icon bar of ProSim DAC:

<u>File Edit Configuration Elowsheet Too</u>	ls <u>S</u> imulation <u>W</u> indows <u>H</u> elp			
🗋 🔄 - 🗟 🌒 🚳	🍾 🗊 🗋 🐹 🕥 🚳	Name of the item:	Final time:	4,845633 h Detta: 17445 s 🔽 Dynamic
💽 나 다 🐼 🥙 🎄	🗟 🕨 - 🖹 🗟 🔟 🗍			х ⋈ ≤λ 😢 🗗 🖬 🗗

Simulation time	Value
Final	4,845633 h
Delta	17 445 s

1.5.3. Adsorption column

1.5.3.1. Feeds

Four feeds can be used in ProSim DAC:

- ✓ Adsorbates flow:
- \checkmark Flow for the thermal regeneration:
- ✓ Flow for the pressure regeneration:
- ✓ Flow for the cooling:

Flow to be purified during the adsorption step.

Flow used during the thermal regeneration (hot nitrogen, steam...). Flow used during the pressure regeneration (low pressure

nitrogen...).

Flow used to cool the column at the end of the thermal regeneration step.

Only the two first feeds are used in this example as shown on the screen shot below.

Identifica	ation	Parameters	Scripts	Report	Streams	Profiles	Notes	Advanced p	
Feeds	Cha	racteristics	Compound	s Tran	sfer Oth	ers Ads	orption /	Regeneration	
Flow									
V A	dsorb	ates flow			VOC		4		 Dichloromethane stream
📝 FI	low fo	or the thermal	regeneratio	n	Hot_N	2	•	•	 Hot nitrogen stream
FI	low fo	or the pressu	re regenera	tion				w	
Flow for the cooling						w			

1.5.3.2. Outlets

Two outlets can be used in ProSim DAC:

- ✓ Adsorption steps: Output stream during the adsorption steps.
- Regeneration steps: \checkmark

Output stream during the regeneration steps.

The output stream during the adsorption steps corresponds to "Ads Outlet" and the output stream during the regeneration steps corresponds to "Reg Outlet", as shown on the screen shot below.

Outlets		
Adsorption steps	Ads Outlet	~
Regeneration steps	Reg Outlet	~

1.5.3.3. Column characteristics

The column used is a lengthwise flow column which characteristics are shown on the following screen shot. The dimensions to be specified are the ones of the adsorbent bed.

Column diameter (D)	5	cm 👻	
Column length (L)	27.5	cm 🔻	
	L		

Transvers flow columns can also be modeled in ProSim DAC.

1.5.3.4. Thermal behavior

The following thermal heat exchanges can be modeled in ProSim DAC:

- Heat exchange in the bed: "Given heat duty without wall transfer".
 This possibility allows to model an adiabatic working or a given heat duty for each step working (heat exchanger in the adsorbent bed).
- Wall heat transfer + thermal heat exchange in the bed: "Given heat duty and wall transfer". The heat exchange is done by the wall of the column. By default, the wall temperature is constant during the time and along the length of the column. To go beyond this assumption, the option "take into account thermal inertia of the column wall" must be activated. It is possible to add a given heat duty (by default zero) in the adsorbent bed for each step.

In this example, the thermal transfer is done by the wall without any direct heating/cooling in the bed of adsorbent:

Thermal behavior				
Heat transfer	Given heat duty and wall transfer			
Wall temperature	22°C			

1.5.3.5. Adsorbent bed characteristics

Bed characteristics			
Void ratio	0,37		

1.5.3.6. Adsorbent characteristics

The density of the particles takes into account of the intra-particulate porosity.

Particles characteristics				
Diameter	4 mm			
Density	750 kg/m³			
Specific heat	1050 J/kg/K			
Surface/Volume ratio	1500 m²/m³			

1.5.3.7. Measures conditions for concentration results

The user can specify the temperature and pressure conditions he wants to calculate the volumetric concentrations in the gas phase. Indeed, the density is then necessary and this one, particularly in the case of a gas, is sensitive to the temperature and the pressure. In this example, the volumetric concentrations in the gas phase are evaluated in the normal temperature and pressure conditions (273,15 K – 101 325 Pa).

Measures conditions	Value			
Conditions	Normal			

1.5.3.8. Initialization

It's necessary to define the state of the column before its first use. In this example, it's assumed that the column is inerted with nitrogen at temperature and pressure levels corresponding to the flow to be purified.

Initialization	Value				
Туре	Supplied by the user				
Pressure	1 atm				
Temperature	20°C				
Molar fractions					
Dichloromethane	0				
Nitrogen	1				

The screen shot below shows the information of the previous paragraphs (from paragraph 1.5.3.3 to paragraph 1.5.3.8 included) specified in the module interface: "Parameters" tab, "Characteristics" sub-tab.

Identification	Parameters	Scripts	Report	Stream	s Pro	files	Notes	Adva	nced p	arameters				
Feeds Char	racteristics	Compoun	ds Tran	sfer Ot	hers	Adso	rption / F	Regene	ration	Financial results	Prints	Parameters		
Column									Initial	ization				
Column typ	e	L	engthwise	e flow co	lmun			•	Initia	lization type	Supplied	by user		•
					Edit	•			Initia	al pressure	1		atm	•
Heat trans	fer	G	iven heat	duty and	wallt	ransfe	F	•	Initia	al temperature	20		°C	•
Wall tempe	rature		22		•(0		•	Initia	al molar fractions				
Adsorbent	Load								1	DICHLOROMETH	ANE	0		
Bed void ra	atio		0.37		m³	/m³			2	NITROGEN		1		
Particles di	iameter		4		m	m		-						
Particles de	ensity		750		kg	g/m3		•						
Specific he	eat of the solid	ł	1050		J	kg/K		-						
Particle sur	rface/volume	ratio	1500		m²	/m³								
Measures of	conditions (T,P)								Summation		1.000	0	
Conditions		N	ormal					•						

1.5.3.9. Adsorption isotherms and enthalpies

The Langmuir model is selected for the adsorption isotherm of dichloromethane and nitrogen:

$$q_{i} = \frac{\left[q_{m0} \exp\left(\frac{q_{m1}}{T}\right)\right] \left[K_{0} \exp\left(\frac{K_{1}}{T}\right)\right] P_{i}}{1 + \left[K_{0} \exp\left(\frac{K_{1}}{T}\right)\right] P_{i}}$$

It's assumed that nitrogen is not adsorbed. The values of the parameters with the corresponding units are displayed in the table below.

Dichloro	methane	Nitrogen			
Isotherm	Langmuir	Isotherm	Langmuir		
q _{m0} (mol/kg)	1,094644264	q _{m0} (mol/kg)	0		
K ₀ (atm ⁻¹)	0,045997002	K ₀ (atm ⁻¹)	0		
q _{m1} (K)	628,3009558	q _{m1} (K)	0		
K ₁ (K)	2427,456107	K ₁ (K)	0		

The adsorption phenomenon being exothermic, the values of the enthalpies of adsorption are negatives. As the nitrogen is assumed not to be adsorbed, its adsorption enthalpy is set to zero.

Adsorption enthalpy	Dichloromethane Nitrogen				
Туре	Giv	/en			
∆H _{ads} (kJ/mol)	-51	0			

This information has to be specified in the "Parameters" tab, "Compounds" sub-tab:

Identification Parameters Scripts Rep	ort Streams Profiles Notes	Advanced parameters			
Feeds Characteristics Compounds 7	Transfer Others Adsorption /	Regeneration Financial r	esults Prints		
Characteristics					
DICHLOROMETHANE NITROGEN	Adsorption enthalpy			Adsorption enthalpy	
	Enthalpy of adsorption	Given	•	Enthalpy of adsorption	Given 👻
	Adsorption heat	-51 kJ/m	nol 👻	Adsorption heat	0 cal/mol 👻
	Advaration is otherm			Advantion is other	
	Adsorption isotherm			Adsorption isotherm	
	Correlation	Langmuir	•	Correlation	Langmuir 🔻
	$q_{i} = \frac{\left[q_{m0} \exp\left(\frac{q_{m1}}{T}\right)\right]}{\left[1 + \left[K_{0} \exp\left(\frac{q_{m1}}{T}\right)\right]\right]}$	$\frac{\left[K_0 \exp\left(\frac{K_1}{T}\right) \right] P_i}{\left[m \left(\frac{K_1}{T}\right) \right] P_i}$		$q_{i} = \frac{\left[q_{m0} \exp\left(\frac{q_{m1}}{T}\right)\right]}{\left[1 + \left[K_{0}\right]\right]}$	$\left \frac{\left[K_{0} \exp\left(\frac{K_{1}}{T}\right) \right] P_{i}}{\left[\frac{K_{1}}{T} \right] P_{i}} \right $
		·(T)]·)			τ(τ)]')
	qm0 1.094644264	mol/kg Load		qm0 0	mol/kg Load
	K0 0.045997002	atm-1		ко 0	atm-1
	qm1 628.3009558	к		qm1 0	к
	K1 2427.456107	к		К1 0	к

1.5.3.10. Mass transfer

The following options are available for the mass transfer:

- ✓ Transfer coupled in gas and solid phase.
- ✓ Mass transfer resistance ("linear driving force" model in gas phase and/or in solid phase, the mass transfer coefficient needed could be specified by the user or calculated by ProSim DAC. It's also possible to neglect the mass transfer resistance.

In this example, the mass transfer resistance has been taken into account in the two phases. The necessary coefficients are calculated by ProSim DAC for the gas phase and specified for the solid phase. In this case they are obtained by comparisons with experimental results.

	Value			
Mass transfer				
Туре	Gas and solid transfer			
Gas mass transfer				
Туре	kf calculated, Petrovic-Thodos			
Solid mass transfer				
Туре	kf supplied			
Dichloromethane	0,1 s ⁻¹			
Nitrogen	0 s ⁻¹			

1.5.3.11. <u>Thermal transfer</u>

It's possible to take into account the enthalpy balance in ProSim DAC or to ignore it. An isothermal working can be modeled if the enthalpy balance is not taken into account. If the enthalpy balance is taken into account, the gasadsorbent and the gas-wall heat transfer coefficients are necessary. They can be calculated, as in this example, or specified.

Thermal transfer	Value
Enthalpy balances	Taken into account
Gas – Adsorbent	Calculated (Satterfield)
Gas – Wall	Calculated (Leva)

The screen shot below shows the information of the previous paragraphs 1.5.3.10 and 1.5.3.11 specified in the module interface: "Parameters" tab, "Transfer" sub-tab.

ds C	Characteristics Cor	mpounds Tran	sfer Others	Adsor	ption / Reg	eneration	Financial results	Prints	Parameters		
terial	transfer					Thern	nal transfer				
ransfe	er type	Gas a	nd solid trans	sfer	*	VE	nthalpy balances	?			
Gas m	aterial transfer					Gas	-adsorbent	Cal	culated (Satte	rfield)	
Gas t	transfer type	kf calcul	ated, Petrovi	c-Thodos	•						
						Gas	-wall	Cal	culated (Leva))	
						Wall t	hermal inertia				
Solid n	naterial transfer					Wall the Mass	hermal inertia ake into account th : (wall)	nermal in e	ertia of the col	umn wall	
Solid n	naterial transfer transfer type	kfsuppli	ed		-	Wall ti Mass Spec	<mark>hermal inertia</mark> iake into account th 6 (wall) ific heat (wall)	ermal ine	ertia of the col	kg cal/g/K	
Solid n Solid Mate	naterial transfer transfer type erial transfer coeffic	kf suppli	ed ase (s⊰)		Wall the Mass Spec	hermal inertia ake into account th (wall) ific heat (wall) mess (wall)	ormal ine 0 0 0	ertia of the col	wmn wall kg cal/g/K m	
Solid n Solid Mate	naterial transfer transfer type erial transfer coeffic DICHLOROMETHA	kf suppli ients of solid ph NE 0.	ed ase (s⊣ 1	')		Wall the Mass Spec Thick There	hermal inertia iake into account th (wall) ific heat (wall) mess (wall) mal conductivity	oermal ine 0 0 0	ertia of the col	wmn wall kg cal/g/K m W/m/K	
Solid n Solid Mate	naterial transfer transfer type erial transfer coeffic DICHLOROMETHA NITROGEN	kf suppli ients of solid ph NE 0. 0	ed ase (s◄ 1	')		Wall the Mass Spec Thick Therr Wall-	hermal inertia ake into account th s (wall) ific heat (wall) mess (wall) mal conductivity outside transfer co	oermal ine 0 0 0 0 0	ertia of the col	wmn wall kg cal/g/K m W/m/K Given	

1.5.3.12. Adsorption thermodynamics

The adsorption thermodynamic models available are:

- ✓ Simple model: This model doesn't take into account the influence of the compounds on each other's. The adsorbed quantity of a given compound is directly given by its adsorption isotherm specified by the user.
- ✓ IAS or RAS: This model takes into account the influence of the compounds on each other's. The IAS model assumes an ideal adsorbed phase. The RAS model is used if an activity coefficient model is selected in the thermodynamic profile of the Simulis Thermodynamics calculator.
- ✓ Langmuir extended: This model takes into account the influence of the compounds on each other's. It has to be used with pure compound adsorption isotherms of the type "Langmuir extended".

In this example, the simple model is selected.

Adsorption thermodynamics	Value
Adsorption model	Simple model

The adsorption thermodynamic model is specified in the "Parameters" tab, "Others" sub-tab. The left part of this subtab is used to specify an optional valve at the column outlet during the adsorption step.

Identification	Parameters	Scripts	Report	Streams	Pro	files Notes	Advanced p	arameters			
Feeds Cha	racteristics	Compound	is Tran	sfer Oth	ners	Adsorption /	Regeneration	Financial results	Prints	Parameters	
Valve							Therr	nodynamics			
Presen	ce of an outle	et valve					Ads	orption model	Sim	ple model	•
State at th	he starting		Open				*				
Pressure	at the openin	g	0		atm		-				
Equation	coefficient		1E-6]						
<u>Column</u>											
Outlet pres	ssure		1		atm	•]				

1.5.3.13. <u>Sequence</u>

The "Adsorption/Regeneration" sub-tab of the "Parameters" tab allows to select the type of the cycle to simulate between the five available:

- 1. Adsorption only
- 2. Adsorption + thermal regeneration
- 3. Adsorption + pressure regeneration
- 4. Adsorption + pressure regeneration + thermal regeneration
- 5. Adsorption + thermal regeneration + pressure regeneration

The cycle "Adsorption + thermal regeneration" is used in this example to model a TSA (Thermal Swing Adsorption) process as shown in the following figure.

Identification Parameters Scripts	Report Streams Profiles Notes Advanced parameters	8
Feeds Characteristics Compour	ds Transfer Others Adsorption / Regeneration Financia	I results Prints Parameters
Adsorption and regeneration		
Sequence type	Adsorption + thermal regeneration	•
	Adsorption only	
	Adsorption + thermal regeneration	
	Adsorption + pressure regeneration	
	Adsorption + thermal regeneration + pressure regeneration	
	Auserphon - alemanegeneration - pressure regeneration	
Adsorption	Parameters A	A: Adsorption
	Events	EVA: Stop adsorption events
Thermal regeneration	Parameters RT	RT: Thermal regeneration
	Events	EVT: Stop thermal regeneration events
End of simulation	Events	

Optional parameters can be defined for each step ("Parameters..." buttons):

- ✓ Adsorption:
 - Wall temperature specific to this step.
 - Heat duty exchanged in the bed.
- ✓ Thermal regeneration:
 - Co- or counter-current regeneration.
 - o Bed and/or wall preheating of the column.
 - Cooling of the column at the end of the step.
 - Temporization of the column at the end of the step.
 - Heat duty exchanged in the bed.

Each step is ended by an event. The first event reached starts the next step. The available events are the following ones ("Events..." buttons):

- ✓ Adsorption
 - Step duration.
 - o Breakthrough rate of a compound at a given position in the column.
 - Gas phase concentration of a compound at a given position in the column.
 - Solid phase concentration of a compound at a given position in the column.
 - o Maximal temperature reached at a given position in the column.
 - Maximal pressure reached at a given position in the column.
- ✓ Thermal or pressure regeneration
 - o Step duration.
 - Gas phase concentration of a compound at a given position in the column.
 - Solid phase concentration of a compound at a given position in the column.
 - o Maximal temperature reached at a given position in the column.
 - Maximal pressure reached at a given position in the column.
 - Amount produced of a compound at a given position in the column.
- ✓ Simulation end
 - End simulation time (§ 1.5.2) or number of cycles.
 - o Total amount produced of a compound at a given position in the column.
 - o Maximal temperature reached at a given position in the column.
 - Maximal pressure reached at a given position in the column.
 - Total amount treated of a compound.

In this example, the regeneration of the bed of adsorbent is a thermal regeneration done by a hot nitrogen stream. This stream flows counter-currently compared to the adsorption flow. The default parameters are kept for the two steps (adsorption and thermal regeneration). These two steps and the simulation are stopped by a duration.

	Value
Sequence	
Туре	Adsorption + Thermal regeneration
Adsorption	
Parameters	Default values
Events	Duration = 12 600 s
Thermal regeneration	
Parameters	Default values
Events	Duration = 4 845 s
End of simulation	
Events	End simulation time

1.5.3.14. Financial balance

ProSim DAC performs a financial balance on the regeneration steps. If the user is interested, it's possible to modify the parameters default values in the "Financial results" sub-tab of the "Parameters" tab.

Identifica	ation Parameters	Scripts	Report	Streams	Prot	files N	lotes	Advanced p	arameters		
Feeds	Characteristics	Compound	s Tran	sfer Oth	ers	Adsorption / Regeneratio			Financial results	Prints	Parameters
Thermal regeneration costs											
Cost	of regeneration flo	w	0.2		€	E/Nm ³					
Cost of regeneration flow heating				100			€/MWh				
Cost of bed preheating			120	120			€/MWh				
Press	ure regeneration	n costs									
Cost	of electricity		100		€	E/MWh					
Powe	er of vacuum pump	0	0			kcal/h		•			

1.5.3.15. Prints

ProSim DAC offers different options for the printing of the calculation results. The parameters specified for this example are listed in the table below.

Parameters	Value
Print results files	Frequency = 60 s
Print 3D plots	Not activated
Print output stream with time step of module	Activated
Printing of inlet data	Activated
Type of results	Mass
Inert detection	Not activated

The following screen shot shows this information specified in the "Prints" sub-tab of the "Parameters" tab.

Identification	Parameters	Scripts	Report	Streams	Profiles	Notes	Advanced p	arameters			
Feeds Char	racteristics	Compound	s Tran	sfer Othe	ers Ads	orption /	Regeneration	Financial results	Prints	Parameters	
Print											
Print re:	sults files										
Freque	ency	60		S		•					
Print 3D) plots										
Freque	ency	0,1		h		-					
V Print ou	itput stream v	vith time st	ep of mo	dule							
V Printing	V Printing of inlet data										
Type of res	sults	Mass				•					
📄 Inert de	tection										
Thresh	old	1E-6		kmol		-					

1.5.3.16. Integration, tolerances, and model parameters

In ProSim DAC, the user has access to a set of integration, tolerances, and model parameters. Only the parameters shown in the table below are modified compared to the default values. The use of the analytical calculation of the derivatives speeds up the solving of the problem. The model consists in a numerical time integration and on a spatial discretization. In this example, the column is discretized in 7 cells. The mass transfer coefficients in solid phase (§ 1.5.3.10) are modified for the regeneration steps. They are determined by comparisons with experimental data.

Parameters	Value
Maximum integration step	60 s
Derivatives	Calculated analytically
Number of discretization cells	7
Solid transfer	
Туре	Given
Dichloromethane	0.006 s ⁻¹
Nitrogen	0 s ⁻¹
Other parameters	Default values

The following screen shot shows this information specified in the "Parameters" sub-tab of the "Parameters" tab.

Identification	Parameters	Scripts	Report	Streams	Pro	files	Notes	Adva	nced p	arameters				
Feeds Cha	aracteristics	Compounds	Trans	sfer Ot	hers	Adso	rption /	Regene	ration	Financial resu	ults	Prints	Parameters	
Integration								Tolerances			Relat	tive	Absolute	
Max. integ	ration step		60	60			s •			Partial concentrations Concentrations			5	1E-5
Initial integ	ration step		0.005	0.005			s •						01	0.0001
Integration	method		Hollow	matrix, a	analyti	cal ev	aluation	•	Tem	peratures		0.00	1	0.001
Step coun	t		2						Pres	sures		0.00	1	0.001
Derivative	s		calcula	ated anal	ytically	t -		•	Enth	alpies		0.1		0.1
Model para	ameters								Spe	ed		0.1		0.1
Number of	fdiscretization	n cells	7	7 0 m ²										
Axial disp	ersion coeffic	ient	0			m²/s								
$\Delta {\rm H}_{\rm Regeneration} \ / \ \Delta {\rm H}_{\rm Adsorption} (\rm ratio)$		1	1											
Heat duty applied to Gas enthalpy balance						•								
Duration o	f the cubic sp	line	0 h			•								
Solid trans	sfer		Given					•						
Material t	ransfer coeffi	icients of so	lid phase	e (s·1)										
1 DIC	CHLOROMETH	ANE	0.00	6										
2 NI	ROGEN		0											

2. RESULTS

2.1. Simulation report of the adsorption column

The simulation report of the adsorption column ("Report") presents global results (integrated during the time): initial characteristics of the column, adsorbed quantities, quantities recovered during the regeneration...

The mass of adsorbent is not directly specified in the input data. This value is calculated by ProSim DAC depending on the geometrical characteristics of the bed and the adsorbent characteristics. It's then interesting to verify in the simulation report the mass of adsorbent calculated corresponds to the end wished. For this example, the mass of adsorbent is about 255 g.

COLUMN GENERAL CHARACTE	RISTICS	
Adsorbent mass in the column:	255.132	(G)
Column volume :	0.539961	(L)
Solid volume :	0.340176	(L)
Void volume :	0.199786	(1)

With the operating parameters specified (see § 1.5.3.13 among others), the bed of adsorbent is not completely regenerated (112 g of dichloromethane adsorbed and 85 g recovered during the regeneration).

AMOL	JNT ADSORBED	(G)			
	COMPONENT	Cycle N°	° 1		
	DICHLOROMETHANE	111.894	4 E-03		
	NI HOULH	4.255050	2 05		
AMOL	JNT RECOVERED	DURING	THERMAL	REGENERATION	(G)
	COMPONENT	Cycle N° :	1		
	DICHLOROMETHANE	84.7109			
	NITROGEN	2020.83			

The negative value of the amount of nitrogen adsorbed corresponds to the mas balance deviation.

2.2. <u>Profiles of the adsorption column</u>

Several profiles (temperatures, pressures, velocities, concentrations, compositions, and breakthrough curves) in the adsorption column are available after the simulation from the module edition window ("Profiles" tab).

The following figure shows the breakthrough curve of dichloromethane. The breakthrough is assumed to be reached when the concentration at the column outlet is equal to 10% of the inlet concentration. The breakthrough is reached after 1h22min. The bed of adsorbent is saturated when the outlet concentration is equal to the inlet one. This is the case after 3h30min.

Dichloromethane breakthrough curve

The figure below presents the temperature profile in the first and the last discretization cell. In the case of the adsorption:

- ✓ First cell: Inlet cell of the column
- ✓ Last cell: Outlet cell of the column

As the regeneration is done counter-currently:

- ✓ First cell: Outlet cell of the column
- ✓ Last cell: Inlet cell of the column

The temperature profiles during the adsorption step show the corresponding temperature peak. During the thermal regeneration the temperature gradient is higher. Indeed, the extremity where the hot gas enters (last cell) is rapidly at the thermal equilibrium with the incoming flow (170°C). At the opposite extremity, the temperature increase is less and the equilibrium between the wall temperature (22°C) and the hot gas (170°C) has the time to be reached.

Temperature profiles in the column

2.3. Profiles of the outlet stream

The following figure shows the evolution of the molar fraction of dichloromethane at the column outlet. Once the breakthrough is not reached, the adsorbent plays its role and the dichloromethane amount at the column outlet is null. When the breakthrough time is reached, the outlet stream is charged progressively in dichloromethane. In this example, the adsorption step is ended at the time corresponding to the saturation of the bed. The bed no more retained the dichloromethane, and its outlet concentration is equal to its inlet concentration. The counter-current thermal regeneration by a hot nitrogen stream allows to desorb the dichloromethane retained in the adsorbent. After a peak corresponding to the dichloromethane accumulated in the bed, the dichloromethane amount decreases because of the bed regeneration. This step is ended before a complete regeneration of the bed.

Dichloromethane molar fraction at the outlet of the column

The above profile and other ones (temperature, pressure, flow rate, enthalpy, and compositions) are available for the column outlet stream at the end of the simulation from the outlet stream edition window ("Tabulated results..." button in the "Parameters" tab).

3. References

- [RAM11] RAMALINGAM S.G. SAUSSAC J., PRE P., GIRAUDET S., LE COQ F., LE CLOIREC P., NICOLAS S., BAUDOUIN O., DECHELOTTE S., MEDEVIELLE A., "Hazardous Dichloromethane Recovery in Combined Temperature and Vacuum Pressure Swing Adsorption Process", J. Hazard. Mater., 198, 95-102 (2011)
- [ROW11] ROWLEY R.L., WILDING W.V., OSCARSON J.L., GILES N.F., "DIPPR® Data Compilation of Pure Chemical Properties", Design Institute for Physical Properties, AIChE, New York, NY (2011)