

PROSIMPLUS APPLICATION EXAMPLE

SIMULATION OF A BRAZED PLATE-FIN HEAT EXCHANGER (BPFHE) WITH PROSEC CAPEOPEN UNIT OPERATION

SIMPLE EXAMPLE

INTEREST OF THIS EXAMPLE

This example shows brazed plate-fin heat exchanger with two fluids. There is a side stream on the hot stream and an external recirculation on the cold stream. This heat exchanger is modeled using ProSec, ProSim's CAPE-OPEN compliant unit operation dedicated to the simulation of brazed plate-fin heat exchangers. ProSec can take into account the effect of the stacking and of the pressure drop on the enthalpy curves. In this example, the ProSec unit operation runs inside the ProSimPlus environment, i.e., within the ProSimPlus simulation software where the thermodynamic and physico-chemical data needed are automatically calculated using Simulis Thermodynamics, the thermodynamic calculation server of ProSimPlus.

Access	Free-Internet	Restricted to ProSim clients	Restricted	☐ Confidential
CORRESPON	IDING PROSIMPLUS FILE	COPROSEC_EX_EN-Simple-e	example.pmp3	

Please note that this use case is only an example and should not be used for other purposes. Although this example is based on an actual case, it may not be considered as typical nor are the data used always the most accurate available. ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example.

Version: September 2015 Page: 2 / 12

TABLE OF CONTENTS

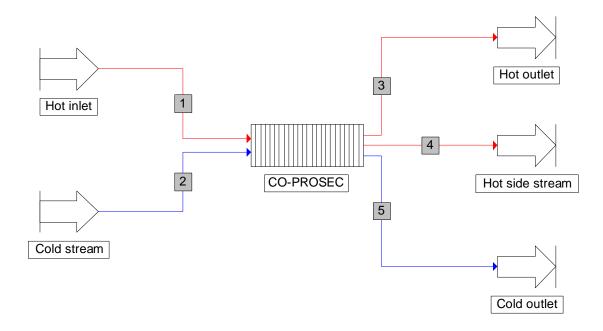
1. P	ROCESS MODELING	3
1.1.	Process description	3
1.2.	Process flowsheet	4
1.3.	Compounds	4
1.4.	Thermodynamic model	4
1.5.	Operating parameters	5
1.	5.1. Process feed	5
1.	5.2. Brazed plate-fin heat exchanger	5
2. R	ESULTS	10
2.1.	Mass and energy balances	10
2.2.	Brazed plate-fin heat exchanger profiles	11
3. R	EFERENCES	12

Version: September 2015 Page: 3 / 12

1. Process modeling

1.1. Process description

This simple example is the simulation of a brazed plate-fin heat exchanger (BPFHE) with two streams, one hot stream and one cold stream, composed of a mixture of methane and ethane. A side stream is present on the hot stream. The cold stream has an external recirculation.


Typically, one BPFHE can contain as many as ten different streams. Thanks to their low cost of production and its high performance (BPFHE are generally made of aluminum), BPFHE are widely used in cryogenic processes. Here, the BPFHE are simulated with the ProSec CAPE-OPEN unit operation. The detailed model implemented in this unit operation takes into account the complex geometries of this type of heat exchangers, notably the stacking. The assumption of common wall temperature is used only in the initialization step.

The hot stream enters the heat exchanger as stream "1". Ten percent (10%) of this stream leaves the heat exchanger by a side stream before the end of the heat exchanger (stream "4"). The rest of the hot stream flows out at the end of the heat exchanger in stream "3". The inlet stream "2" is the cold stream. The entire cold stream leaves the heat exchanger at approximatively 1/3rd of the length. It re-enters the heat exchanger at approximatively 2/3rd of the length. The hot stream and the cold stream flow is counter-current.

In this example, the ProSec CAPE-OPEN unit operation is used within the ProSimPlus simulation environment, i.e., the Simulis Thermodynamics calculation server for thermophysical properties and phase equilibria calculations is used. So for this example it has been chosen to let the unit operation automatically calculate the thermodynamic and physico-chemical data needed for the simulation.

Version: September 2015 Page: 4 / 12

1.2. Process flowsheet

1.3. Compounds

The compounds in the simulation, their chemical formula and CAS numbers are shown in the following table. Their pure component properties are extracted from the standard data base provided with ProSimPlus [ROW11].

Compound	Chemical formula	CAS number	
Methane	CH ₄	74-82-8	
Ethane	C ₂ H ₆	74-84-0	

1.4. Thermodynamic model

The thermodynamic model is based on an equation of state approach. The chosen equation of state is the Peng Robinson (PR) [PEN76] model with binary interaction parameters extracted from the ProSimPlus database.

Version: September 2015 Page: 5 / 12

1.5. **Operating parameters**

1.5.1. Process feeds

	Hot stream	Cold stream
Temperature (K)	299	267
Pressure (bar)	69.4	69.4
Total flow rate (kg/h)	4 790	4 790
Mass fractions		
Methane	0.5	0.5
Ethane	0.5	0.5

1.5.2. Brazed plate-fin heat exchanger

✓ General parameters

Parameters	Value		
Type of exchanger	CO-ProSec		
Number of bodies	1		
Orientation	Vertical		
Fin data base	-> 2002		
Material	Aluminium TRANE		
Used width (mm)	589		
Thickness of the side bars (mm)	14.3		
Thickness of the end bars (mm)	27		
Thickness of the separation plates (mm)	1.8		

✓ Streams parameters

	Stream			
Parameter	Hot	Cold		
Flow direction	From top to bottom	From bottom to top		
Heat exchange correlation	HTFS85			
Pressure drop	Not taken into account			
Side stream				
Name	Side_Hot			
Splitting ratio flow rate (%)	10			

Version: September 2015 Page: 6 / 12

√ Fins characteristics

Name	Fin #1	Fin #2	
Origin	User		
Reference	1001 7844		
Calculation mode	Performance data provided	From geometry	
Туре	Right fin		
Height (mm)	7.13		
Thickness (mm)	0.40		
Fins number per meter	673.2 200		

The performance data of the fin #1 are listed in the follwing table.

Reynolds number	Fanning number	Colburn number	
46	0.98874	0.06258	
122	0.39326	0.04122	
200	0.26355	0.03266	
538	0.14066	0.02048	
881	0.11300	0.01643	
442	0.09665	0.01337	
363	0.08753	0.01106	
6 338	0.08180	0.00797	
17 003	0.08171	0.00604	
45 614	0.07260	0.00462	

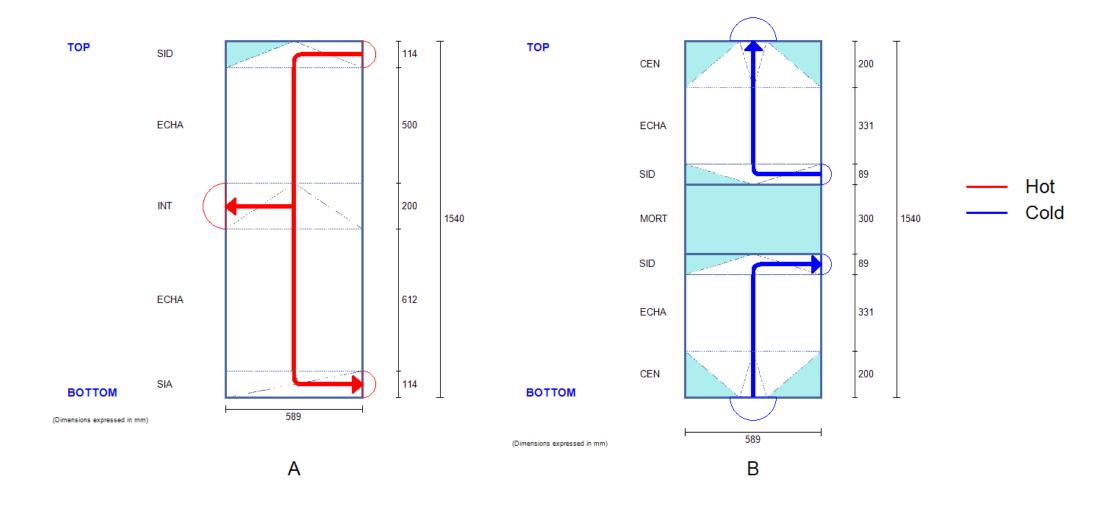
✓ Reference passages

The fins used for each type of zone (whatever the stream) are shown in the table below:

Zone	Fin
Heat exchange zone and "MORT" zone	Fin #1
Distributor	Fin #2

A "MORT" type zone is a zone in which no fluid flows. Only conduction phenomena occur.

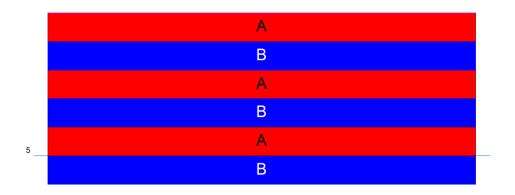
Version: September 2015 Page: 7 / 12

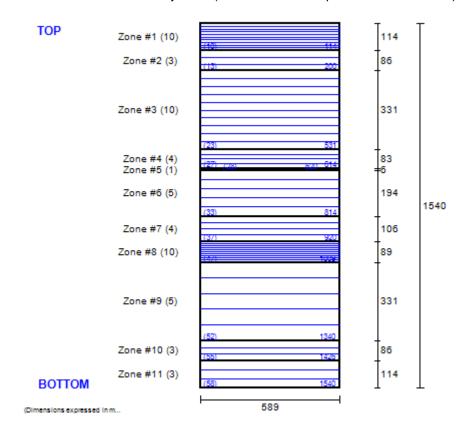

The figure of the next page shows the two reference passages of the heat exchanger.

The characteristics of the distributors are displayed in the following table.

	Distributors characteristics				
Parameter		Hot stream	Cold stream		
Distributor type	SIA	INT	SID	CEN	SID
Block height (mm)	114	200	114	200	89
Number of heads	1	1	1	1	1
Number of prickings	1	1	1	1	1
Distributor opening (mm)	114	200	114	200	89
Distributor height (mm)	114	200	114	200	89
Pricking diameter (mm)	0	0	0	0	0
Head height (mm)	57	100	57	100	44.5

Dimensions are expressed in millimeters.


CO-PROSEC


Version: September 2015 Page: 9 / 12

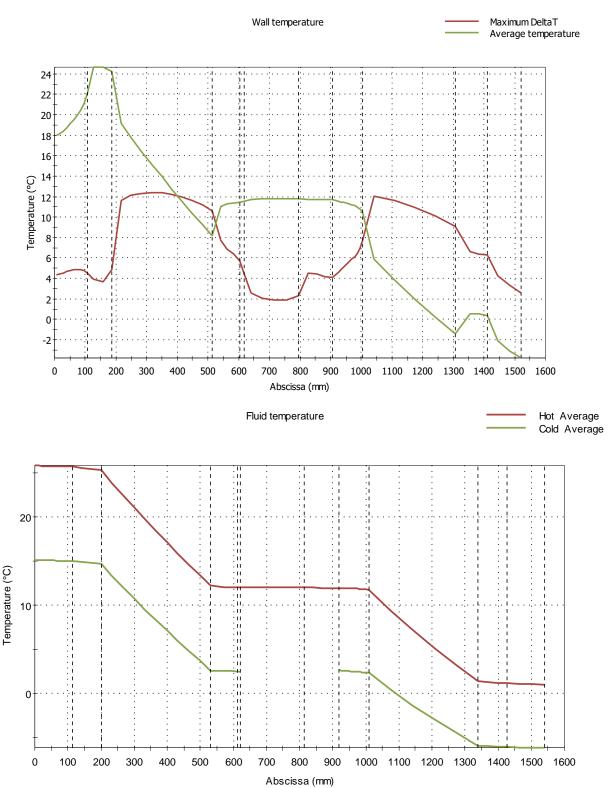
✓ Stacking

Parameters	Value
Number of repetitions of the sequence	3
Sequence	A B

✓ Number of meshes for each elementary zone (dimensions are expressed in milimeters)

Version: September 2015 Page: 10 / 12

2. RESULTS


2.1. Mass and energy balances

Streams		1	2	3	4	5
From		Hot inlet	Cold stream	CO-PROSEC	CO-PROSEC	CO-PROSEC
То		CO-PROSEC	CO-PROSEC	Hot outlet	Hot side str	Cold outlet
Partial flows		kg/h	kg/h	kg/h	kg/h	kg/h
METHANE		2395	2395	2155.5	239.5	2395
ETHANE		2395	2395	2155.5	239.5	2395
Total flow	kg/h	4790	4790	4311	479	4790
Mass fractions						
METHANE	•••••	0.5	0.5	0.5	0.5	0.5
ETHANE		0.5	0.5	0.5	0.5	0.5
Physical state		Vapor	Vapor	Vapor	Vapor	Vapor
Temperature	°C	25.85	-6.15	1.0212	11.956	15.096
Pressure	bar	69.4	69.4	69.005	69.005	69.045
Enthalpic flow	kcal/h	-1.2518E005	-2.5107E005	-1.9611E005	-17428	-1.6272E005
Vapor molar fraction		1	1	1	1	1

Version: September 2015 Page: 11 / 12

2.2. Brazed plate-fin heat exchanger profiles

Several profiles (wall temperature, fluid temperature, pressure, heat transfer coefficient, vaporization ratio...) in the heat exchanger are available after the simulation from the ProSec edition window ("Results" tab). The following figures show the wall temperature profiles (average and maximal deviation) and the fluid mean temperature profiles along the length of the heat exchanger.

Version: September 2015 Page: 12 / 12

3. REFERENCES

[PEN76] PENG Y.D., ROBINSON D.B., "A New Two Constant Equation of State", Ind. Eng. Chem. Fundam., 15, 59-64 (1976)

[ROW11] ROWLEY R.L., WILDING W.V., OSCARSON J.L., GILES N.F., "DIPPR® Data Compilation of Pure Chemical Properties", Design Institute for Physical Properties, AIChE, New York, NY (2011)