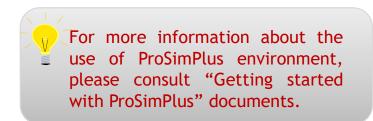
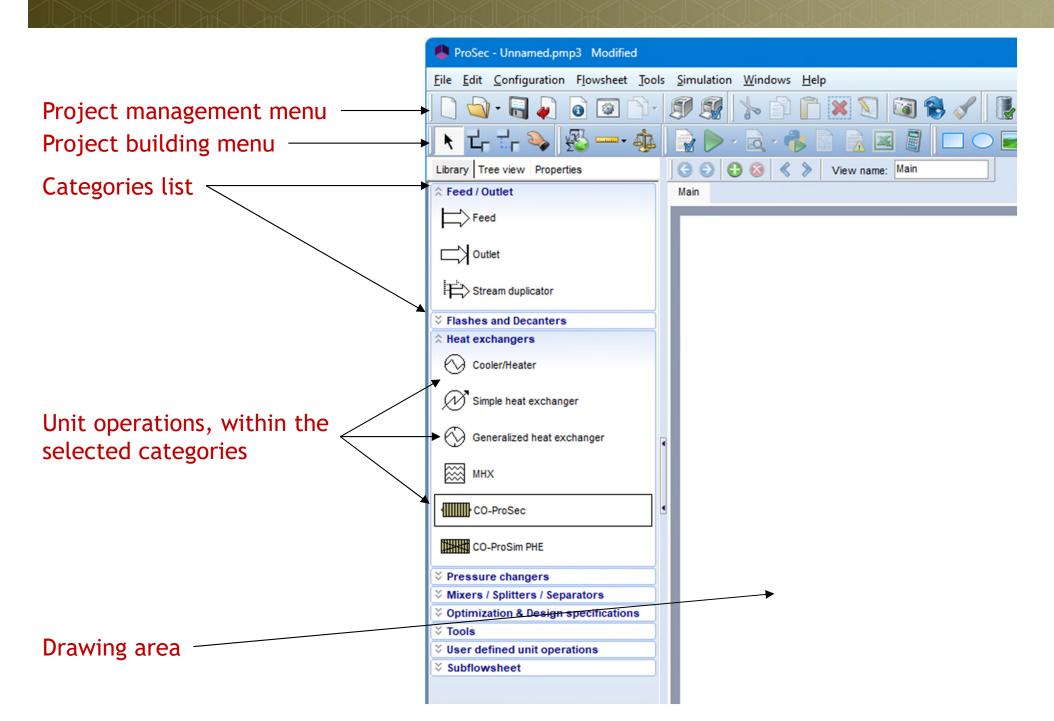
## Getting started with ProSec® in ProSimPlus® environment

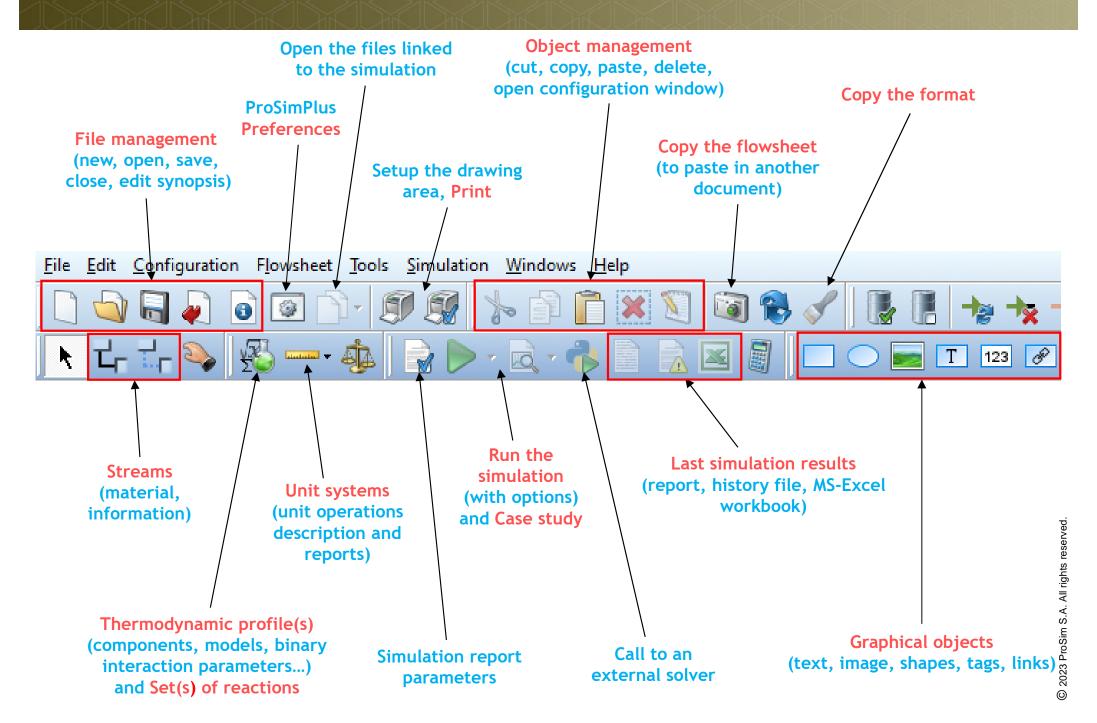
#### Use Case 1: Main features overview

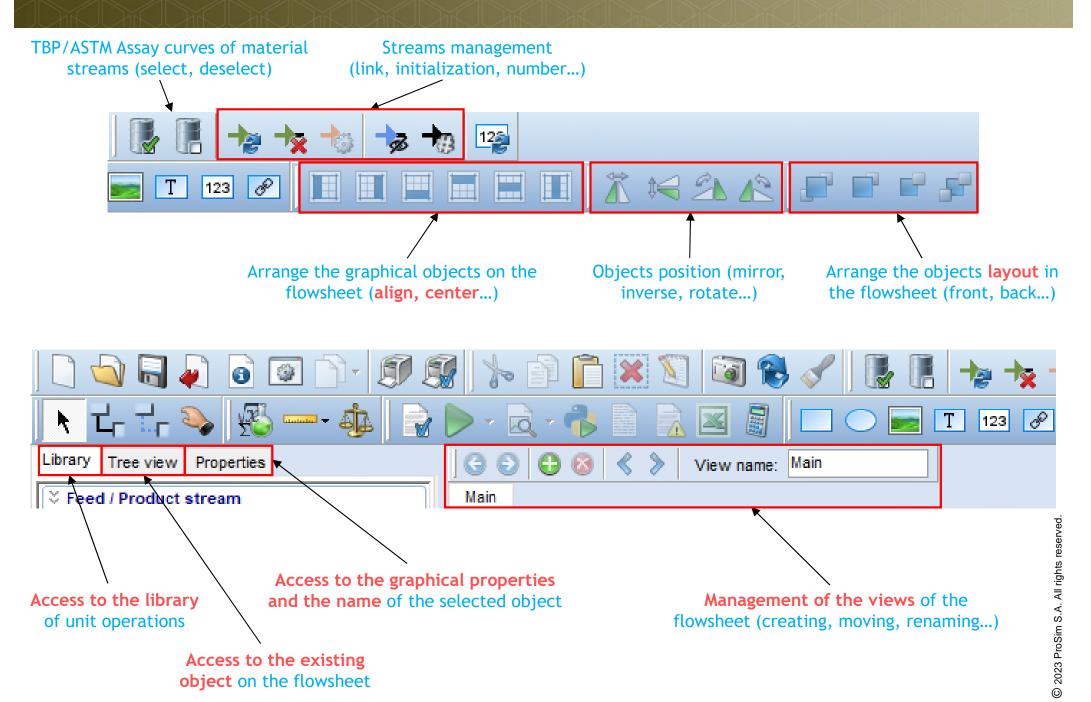
Software & Services In Process Simulation




We guide You to efficiency


© 2023 ProSim S.A. All rights reserved.


#### Introduction


This document presents a general overview of ProSec, ProSim's CAPE-OPEN compliant unit operation dedicated to the simulation of brazed plate-fin heat exchangers. In this document, ProSec is used in ProSimPlus, ProSim's steady state simulation software.

This step by step guide describes the different functions that are used to build a simulation of a brazed plate-fin heat exchanger with ProSec. It is based on a simple heat exchanger with two fluids.









Unit operations library, tree view or properties

Beside the Library View, which presents the unit operations available in ProSimPlus within categories, the Tree View lists the items (streams and unit operations) used in the flowsheet. Selecting one (or several with the Ctrl button) item in the list selects the corresponding item in the flowsheet. Double clicking on the item in the list opens its configuration window.

The Properties tabs allows to modify the graphical aspect of any selceted items of the flowsheet.

| Library Tree view Properties      | Library Tree view Properties |        | Library Tree view Properties |
|-----------------------------------|------------------------------|--------|------------------------------|
| ∛ Feed / Outlet                   | Name                         | Initia | Information                  |
| Flashes and Decanters             | CO-PROSEC                    |        |                              |
| ☆ Heat exchangers                 | Hot inlet                    |        | Name 1                       |
| Cooler/Heater                     | Cold stream                  |        | Description                  |
| G Cooler/Heater                   | Hot outlet                   |        |                              |
|                                   | Hot side stream              |        | Stream                       |
| Simple heat exchanger             | Cold outlet                  |        |                              |
| (D) commentation to a second      | 1                            |        | Start arrow                  |
| Generalized heat exchanger        | <b>→</b> 2                   |        | Middle arrow                 |
|                                   | → 3                          |        | End arrow                    |
| MHX MHX                           | → 4<br>→ 5                   |        |                              |
| CO-ProSec                         | 5                            |        | Cisplay a label              |
| 00-10360                          |                              |        | Line / Outline               |
| CO-ProSim PHE                     |                              |        |                              |
|                                   |                              |        | C Enabled                    |
| × Pressure changers               |                              |        | Color                        |
| X Mixers / Splitters / Separators |                              |        |                              |

# © 2023 ProSim S.A. All rights reserved.

#### Library view

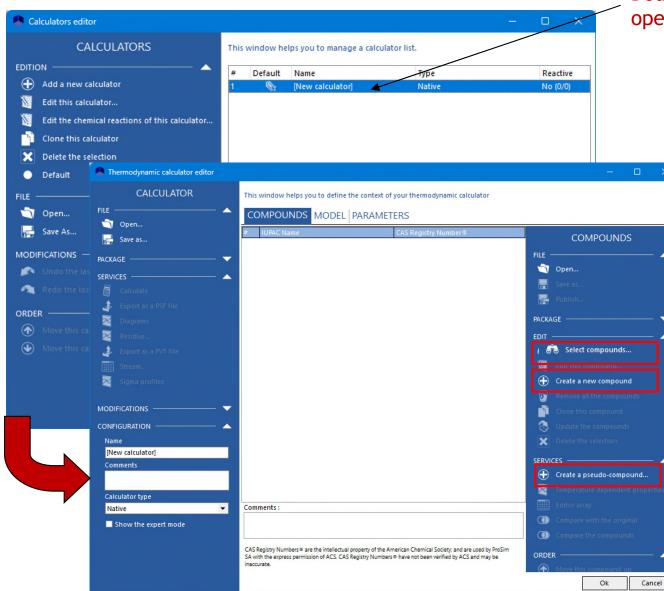
#### Tree view

#### Properties

#### Building the flowsheet

- The steps are the following:
  - ✓ Step 1: Select your components
  - ✓ Step 2: Select your thermodynamic model
  - ✓ Step 3: Create your flowsheet
  - ✓ Step 4: Run the simulation
  - ✓ Step 5: Reports generated
  - ✓ Step 6: Analyze the results from the flowsheet
  - ✓ Step 7: Share the simulation

### Step 1: Select your components


| 🦀 ProSec - Unnamed.pmp3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                                 | The Calculate     | r is a sot of | thermodynamic data      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------|-------------------|---------------|-------------------------|
| <u>File Edit Configuration Flowsheet</u> Tools Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>W</u> indows <u>H</u> elp                   |                                 |                   |               | -                       |
| 🗋 🔄 - 🗟 🎝 🧕 🖉 🖄 🗍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h 🗊 🚺 🐹 🕅 🕼 🚱 🖌 📗                              | ★ ★ ₺ ₺ ₺                       | -                 |               | process. It includes in |
| 토 뉴 💊 🐼 🛏 🎄 🕞 🕑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🗟 - 🛟 📄 🗟 🗷 🧃 🗖 🗢 📼 T                          | 123 🔗 📘 🔳 🔳                     | particular pure   |               | nts and                 |
| Library Tree view Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 🔕 < 📎 View name: Main                          |                                 | thermodynam       | ic models.    |                         |
| Feed / Outlet Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                 |                   |               |                         |
| Flashes and Decanters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                                 |                   |               |                         |
| V Heat exchangers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                                 |                   |               |                         |
| Yressure changers     Mixers / Splitters / Separators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |                                 |                   |               |                         |
| ✓ Initice of Spin actions ✓ Optimization & Design specifikations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calculators editor                             |                                 |                   | - • ×         |                         |
| i Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CALCULATORS                                    | This window helps you to manage | a calculator list |               |                         |
| Vser defined unit operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | This which where you to manage  |                   |               |                         |
| Subflowsheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | # Default Name                  | Туре              | Reactive      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Add a new calculator                           | 1 🗞 [New calculator]            | Native            | No (0/0)      |                         |
| i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 🕅 Edit this calculator                         |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Edit the chemical reactions of this calculator |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                 |                   |               |                         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clone this calculator                          |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X Delete the selection                         |                                 |                   |               |                         |
| N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Default                                        |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                 |                   |               |                         |
| No. Contraction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                   |               |                         |
| le la construcción de la | i Open                                         |                                 |                   |               |                         |
| N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Save As                                        |                                 |                   |               |                         |
| A State of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 🔊 Undo the last modification                   |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Redo the last modification                     |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                 |                   |               |                         |
| N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ORDER A                                        |                                 |                   |               |                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Move this calculator up                        |                                 |                   |               |                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Move this calculator down                      | Comments:                       |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                 |                   |               |                         |
| i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                                 |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                 |                   | Ok Cancel     |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | -                               |                   |               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                                 |                   |               | - You can use severa    |

Click on the Thermodynamics and Compounds icon to open the calculators editor.

You can use several calculators in the same flowsheet.

A. All rights reserved.

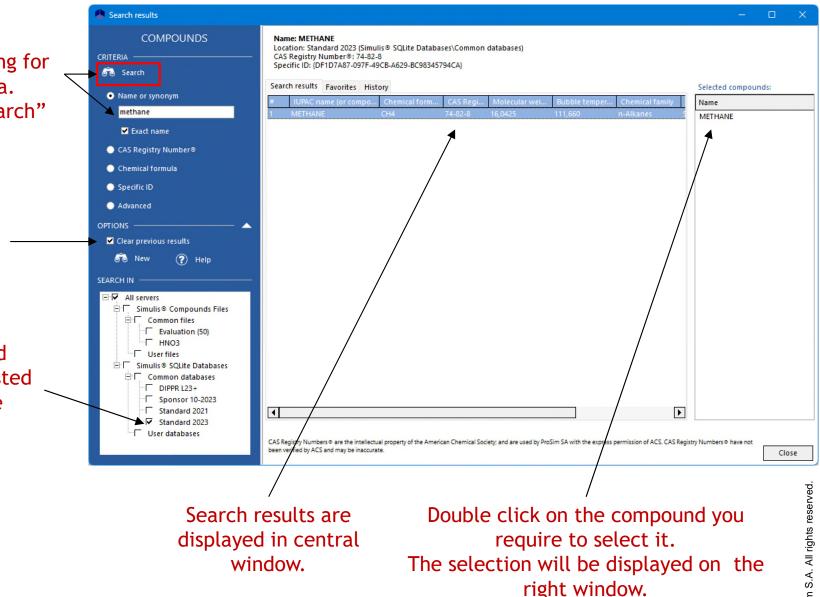
#### Step 1: Select your components



## Double click on the "New calculator" to open the calculator environment window.

To <u>search</u> for a component in one of the databases, click on "Select compounds"

To <u>create</u> a component "from scratch" with the properties that you have, click on "Create a new compound"


To <u>create pseudo compounds</u>, without lights ends, click on "Create a pseudo-compound"

#### **Step 1: Select your components**

Enter the name of the compound you are looking for or select another criteria. Once entered, press "Search"

Check this box to clear previous results

The databases registered on your computer are listed here. Select the last one (in date)



Repeat the operation to select all the components that you need. For this simulation you will need methane and ethane.

## Step 2: Select your thermodynamic model

Once all components are selected, close the component search window to return to the Calculator edition environment.

Click on the "Model" tab to enter the thermodynamic selection environment.

Select an appropriate thermodynamic model using the pull down menu. Here we use Peng-Robinson.

| Thermodynamic calculator editor |                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |       | - 0                                                                                                                                  | ×  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------|----|
|                                 | This window helps you to define the COMPOUNDS MODEL BI                                                                                                                                                                                                                              |                                                                                                                                                            | lator |                                                                                                                                      |    |
| Open     Save as  PACKAGE       | Name<br>Category<br>Profile<br>Approach type<br>Equation of state<br>Alpha function<br>Mixing rules<br>Activity coefficient model<br>Pure liquid fugacity standard state<br>Liquid molar volume<br>Transport properties<br>Enthalpy calculation<br>User-defined thermodynamic model | Peng-Robinson (PR)<br>All the profiles<br>Peng-Robinson (PR)<br>Using Equation of state<br>PR Generalized<br>Peng-Robinson (76)<br>Standard<br>Not defined |       | THERMODYNAMIC MODEL DOCUMENTATION   Thermodynamic assistant  ADDITIONAL PARAMETERS  MODEL INFORMATION  WATER-HYDROCARBON  PURE WATER |    |
|                                 |                                                                                                                                                                                                                                                                                     |                                                                                                                                                            |       | Ok Canc                                                                                                                              | el |

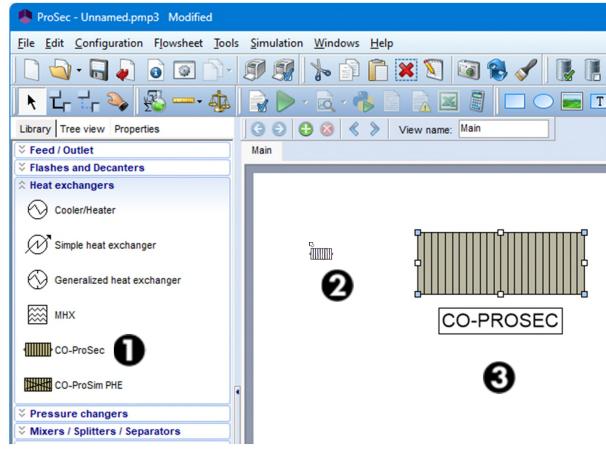
When the selected thermodynamic model requires binary interaction parameters, the "Binaries" tab appears.

## Step 2: Select your thermodynamic model

#### By default, for a new calculator, the available binaries are automatically loaded.

| Thermodynamic calculator editor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | – 🗆 X                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thermodynamic calculator editor     CALCULATOR     FILE   Image: Constraint of the stream of the strea | This window helps you to define the context of your thermodynamic calculator         COMPOUNDS       MODEL       BINARIES       PARAMETERS         These parameters correspond to the general values and are used if the user has not provided each option in the thermodynamic profile)       Binaries view: • Grid • Matrix         Binaries view: • Grid • Matrix       • Matrix         Formulation : Kij = Kij0 + KijT*T         Compound Compound Kij0 KijT         METHANE       ETHANE | specific parameters (buttons to the right of<br>BINARIES<br>ACTIONS<br>Import binaries<br>Clear all binaries<br>Estimate binaries<br>Save the binaries |
| Stream<br>Sigma profiles<br>MODIFICATIONS   CONFIGURATION  Name [New calculator] Comments  Calculator type Native  Show the expert mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not supplied     Supplied     Imported     Estimated     Error       Comments :                                                                                                                                                                                                                                                                                                                                                                                                                | OPTIONS ▲<br>Unit<br>■ parameters will be ignored<br>✓ parameters are automaticcaly loaded                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ok Cancel                                                                                                                                              |

Now that your thermodynamic profile is completed click on "OK" to validate and close the window.


#### Step 3: Create the flowsheet

- A. ProSec unit operation
- B. Feed (inlet) and product (outlet)
- C. Connect all the unit operations with streams

1- Click on "CO-ProSec" icon in the library category "Heat exchangers" to select ProSec unit operation.

2- Move the mouse onto the drawing sheet to where you want to place the unit operation.

3- Click again, to release the unit.





A comprehensive set of features allows you resize, rotate, reposition, align, etc. the element on the drawing area.

U

To configure the ProSec unit operations:

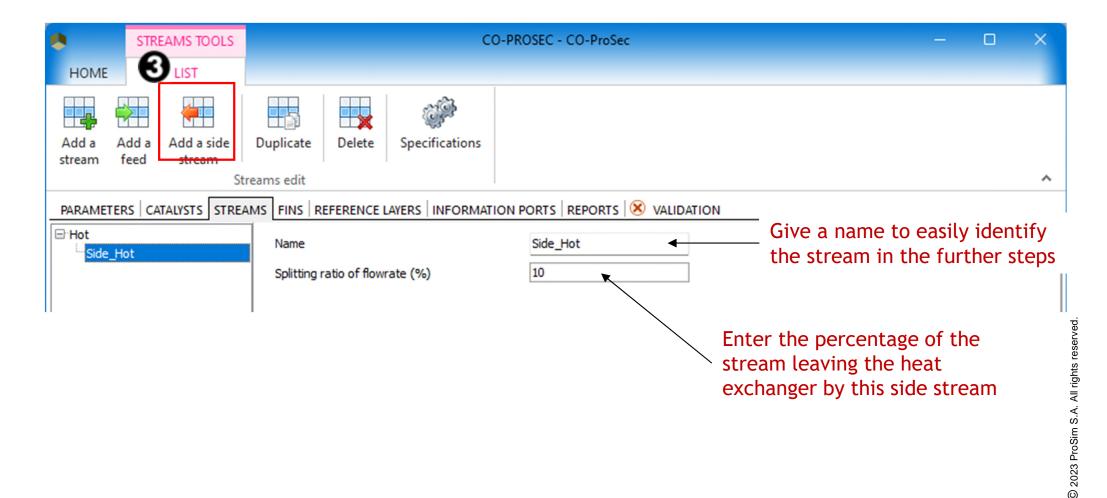
- 1. Double-click on its icon on the flowsheet or select "Edit..." in the contextual menu
- 2. Press the "Parameters" tab
- 3. Press the "Edit..." button

|                | 🐥 ProSec - Unnamed.pmp3 Modifie                                                                        | ed                                                                                                                               |            |
|----------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------|
|                | <u>File Edit Configuration Flowsheet</u>                                                               | t <u>T</u> ools <u>S</u> imulation <u>W</u> indows <u>H</u> elp                                                                  |            |
|                | 🗋 🔄 - 🔚 🥥 💿                                                                                            | D- 🔊 🗐 🍾 D 🛅 💥 💟 🖓 🌏 🗸                                                                                                           | / 🛃 🖪      |
| the            | 💽 🕂 🕆 💊 🔬 🛶                                                                                            | • 🞄 📄 🕨 • 🗟 • 🖚 🗈 🗟 📓 🔲                                                                                                          | O 🗾 🗖      |
| ' in           | Library Tree view Properties                                                                           | G O C C C C C C C C C C C C C C C C C C                                                                                          |            |
|                | Feed / Outlet                                                                                          | Main                                                                                                                             |            |
|                | Flashes and Decanters                                                                                  |                                                                                                                                  |            |
|                | ☆ Heat exchangers                                                                                      |                                                                                                                                  |            |
|                | Cooler/Heater                                                                                          |                                                                                                                                  |            |
|                | Simple heat exchanger                                                                                  |                                                                                                                                  | TTTTT      |
| 🔹 CO-ProSec    | c (\$XTMO)                                                                                             |                                                                                                                                  |            |
| Name: CO-PRO   | SEC                                                                                                    | Edit                                                                                                                             |            |
| Desc: Brazed p | plate-fin heat-exchanger                                                                               | Calcula                                                                                                                          | tors 🕨     |
|                | Parameters Reports Scripts Report Streams No                                                           | otes Advanced parameters                                                                                                         | ►<br>Inhal |
| Specification  | is management                                                                                          |                                                                                                                                  |            |
| Edit           | Open the edition window of the unit operation<br>in order to visualize or to modify its<br>parameters. | Thermodynamics Scriptle Move to                                                                                                  |            |
| Details        | Visualize the registered details of the unit operation on your computer.                               | Output streams calculators     Image: Bring to       Output streams     Image: Bring to       Output streams     Image: Bring to |            |
| Parameters     | Open the edition window of the unit operation supplied by Simulis.                                     | Default calculator  V Select for each stream                                                                                     |            |
| Validate       | Manually start the validation of the unit operation.                                                   | Stream Model                                                                                                                     |            |
| Reports        | Visualize the reports supplied by the unit operation.                                                  |                                                                                                                                  |            |
|                | ttons correspond to actions which are not available<br>h are not implemented by the unit operation.    |                                                                                                                                  |            |
|                |                                                                                                        | <u>O</u> K <u>C</u> ancel                                                                                                        |            |

- "Parameters" tab
  - ✓ Fill in the general characteristics of the heat exchanger as shown on the figure below

| •                                                                                                                  | CO-PROSEC - CO-ProSec -                                                                                                                                                                                                              |              |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| HOME                                                                                                               |                                                                                                                                                                                                                                      |              |
| Import Export Export Synopsis Presult parameters<br>Presult parameters<br>Presult parameters<br>Presult parameters | Conversion<br>tool                                                                                                                                                                                                                   | ita and resi |
| File Document                                                                                                      | Units                                                                                                                                                                                                                                | ^            |
| PARAMETERS CATALYSTS   STREAMS   FINS   REFERENCE LAYERS   II                                                      |                                                                                                                                                                                                                                      |              |
| Body                                                                                                               | Dimensions                                                                                                                                                                                                                           |              |
| Body number  1  Orientation (α)  Vertical: α = 90°  Other  0°  Fin database  -> 2002  Material                     | Used width (Wu)<br>589 mm<br>Thickness of the side bars (Elat)<br>14,3 mm<br>Thickness of the end bars (Eext)<br>27 mm<br>Thickness of the separation plates (Esep)<br>1,8 mm<br>Thickness of the dosing plates (Edo)<br>1,8 mm<br>W | Edo          |

Change the default selection for the orientation and the fin database


- "Streams" tab
  - Describe the two streams of the heat exchanger: a hot stream with a side stream and a cold stream
  - 1. Click on "Add a stream" to add the hot stream

|   |                                                                                           | STR        | EAMS TOOLS        |           |                                                              | C          | D-PROSEC - CO-ProSec 📃 🗆         | × |  |  |  |  |  |
|---|-------------------------------------------------------------------------------------------|------------|-------------------|-----------|--------------------------------------------------------------|------------|----------------------------------|---|--|--|--|--|--|
|   | HOME                                                                                      |            | LIST              |           |                                                              |            |                                  |   |  |  |  |  |  |
| 0 | Add a stream                                                                              | Add a feed | Add a side stream | Duplicate | uplicate Delete Specifications Management of the stream list |            |                                  |   |  |  |  |  |  |
| F | PARAMETERS CATALYSTS STREAMS FINS REFERENCE LAYERS INFORMATION PORTS REPORTS & VALIDATION |            |                   |           |                                                              |            |                                  |   |  |  |  |  |  |
| i |                                                                                           | ERS   CA   | TALYSTS STRE      |           | REFERENCE                                                    |            |                                  |   |  |  |  |  |  |
|   | Hot                                                                                       |            |                   | Name      |                                                              |            | ✓ Hot Specification              |   |  |  |  |  |  |
|   |                                                                                           |            |                   |           |                                                              |            | Cross flow                       |   |  |  |  |  |  |
|   |                                                                                           |            |                   |           |                                                              |            | Continuous thermodynamic         |   |  |  |  |  |  |
|   |                                                                                           |            |                   |           |                                                              |            | Reactive                         |   |  |  |  |  |  |
|   |                                                                                           |            |                   |           |                                                              |            | A catalyst is taken into account | / |  |  |  |  |  |
|   |                                                                                           |            |                   | Enthalp   | c factor                                                     |            | 0 kg/s 💌                         |   |  |  |  |  |  |
|   |                                                                                           |            |                   | Directio  | n of circulatio                                              | n          | From top to bottom $\sim$        |   |  |  |  |  |  |
|   |                                                                                           |            |                   | Oversiz   | ng ratio on fl                                               | owrate (%) | 0                                |   |  |  |  |  |  |
|   |                                                                                           |            |                   | Fouling   | actor                                                        |            | 0 W/m2/K                         |   |  |  |  |  |  |

- "Streams" tab
  - 2. Describe the stream "Hot" characteristics

| PARAMETERS CATALYSTS STREAM | MS | FINS   REFERENCE LAYERS   INFORMATION PORTS   REP      | Give a name and select                              |       |
|-----------------------------|----|--------------------------------------------------------|-----------------------------------------------------|-------|
| <sup></sup> Hot             |    | Name dRed ~                                            | Hot a color to easily                               |       |
|                             |    |                                                        | Cross flow identify the stream in the further steps |       |
|                             |    |                                                        | Continuous thermodynamic                            |       |
|                             |    |                                                        | Reactive                                            |       |
|                             |    |                                                        | A catalyst is taken into account                    |       |
|                             |    | Enthalpic factor                                       | 0 kg/s                                              |       |
|                             |    | Direction of circulation                               | From top to bottom $\sim$                           |       |
|                             |    | Oversizing ratio on flowrate (%)                       | • Change the default                                |       |
|                             | h  | Fouling factor                                         | <sup>0</sup> W/m2/K correlation for the heat        |       |
|                             | Ш  | Correlation used to calculate the exchange coefficient | HTES 85                                             |       |
|                             | Ш  | Threshold where the mixture is dealt as pure (%)       | <sup>99,99</sup> transfer coefficient               |       |
|                             | Ш  | Generation of physico-chemical properties              | tabulated Calculation                               |       |
|                             | ۲  | Supercritical fluid                                    | Calculation phase                                   |       |
|                             | Ш  | Number of tabulated points -                           |                                                     |       |
|                             | Ш  | Extrapolation (DT)                                     | 5 K 🔽                                               | 201   |
|                             | Ш  | Diphasic zone                                          |                                                     | 2000  |
|                             | ۲  | Minimum number of diphasic points -                    |                                                     | -+0   |
|                             |    | Option of diphasic tabulation                          | Difference of enthalpy $\sim$                       | 2:2   |
|                             |    | Pressure drop is taken into account                    |                                                     | <     |
|                             |    | Initial pressure drop                                  | 0 bar                                               | 6     |
|                             |    | Maximum pressure drop                                  | 0,2 bar                                             | 0     |
|                             |    | Safety margin (DT)                                     | 5 K                                                 | 1 000 |
|                             |    | Output temperature (UA calculation)                    | 0 К                                                 | 0     |

- "Streams" tab
  - 3. Click on "Add a side stream" to add the stream "Hot" side stream
  - 4. Fill in the characteristics of this side stream



- "Streams" tab
  - 5. Click on "Add a stream" to add the cold stream
  - 6. Describe the stream "Cold" characteristics

| _ |                               |                                                        |                                  |               |                                   |
|---|-------------------------------|--------------------------------------------------------|----------------------------------|---------------|-----------------------------------|
|   | Add a Add a Add a side stream | Duplicate Delete Specifications                        |                                  |               |                                   |
|   | Str                           | eams edit                                              |                                  |               | ^                                 |
|   | PARAMETERS CATALYSTS STREA    | MS FINS REFERENCE LAYERS INFORMATION PORTS RE          | PORTS                            |               | Give a name to easily identify    |
| Ī | 🖃 Hot                         | Name dBlue ~                                           | Cold                             | Specification |                                   |
|   | Side_Hot                      |                                                        | Cross flow                       |               | the stream in the further steps   |
|   | Cold                          |                                                        | Continuous thermodynamic         |               |                                   |
|   |                               |                                                        | Reactive                         |               |                                   |
|   |                               |                                                        | A catalyst is taken into account |               | Change the default direction of   |
|   |                               | Enthalpic factor                                       |                                  |               | Change the default direction of   |
|   |                               |                                                        | 0 kg/s 🔻                         |               | circulation and the default       |
|   |                               | Direction of circulation                               | From bottom to top               |               | correlation for the heat transfer |
|   |                               | Oversizing ratio on flowrate (%)                       | 0                                |               |                                   |
|   |                               | Fouling factor                                         | 0 W/m2/K                         |               | coefficient calculation           |
|   |                               | Correlation used to calculate the exchange coefficient | HTFS 85 V                        | 0 W/m2/K      |                                   |
|   |                               | Threshold where the mixture is dealt as pure (%)       | 99,99                            |               |                                   |
|   |                               | Generation of physico-chemical properties              | tabulated                        |               |                                   |
|   |                               | Supercritical fluid                                    | Calculation phase                | Automatic     | ✓                                 |
|   |                               | Number of tabulated points                             | -                                | +             |                                   |
|   |                               | Extrapolation (DT)                                     | 5 K 👻                            |               |                                   |
|   |                               | Diphasic zone                                          |                                  |               |                                   |
|   |                               | Minimum number of diphasic points                      | -                                | +             |                                   |
|   |                               | Option of diphasic tabulation                          | Difference of enthalpy $\sim$    |               |                                   |
|   |                               | Pressure drop is taken into account                    |                                  |               |                                   |
|   |                               | Initial pressure drop                                  | 0 bar                            |               |                                   |
|   |                               | Maximum pressure drop                                  | 0,2 bar                          |               |                                   |
|   |                               | Safety margin (DT)                                     | 5 K                              |               |                                   |
|   |                               | Output temperature (UA calculation)                    | 0 К                              |               |                                   |

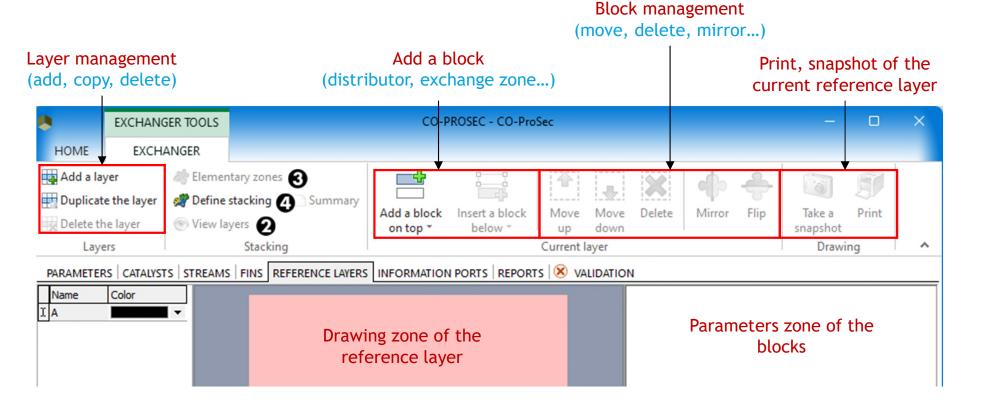
- "Fins" tab
  - ✓ Describe the two fins used in the heat exchanger
  - Fin #1 (for heat exchange zones) is a user-defined, for which performance data are given
  - Fin #2 (for distributors) is a user-defined, for which performance data are calculated from correlations
  - 1. Click on "Add a fin"

|              | FINS     | TOOLS     |                     |                |           | CO                      | -PROSEC - C       | CO-ProSec          |                 |
|--------------|----------|-----------|---------------------|----------------|-----------|-------------------------|-------------------|--------------------|-----------------|
| HOME         | 1        | LIST      |                     |                |           |                         |                   |                    |                 |
| Add<br>a fin | Duplicat |           | Move up<br>selected |                | down      | Delete the selected fin | Impoi<br>user fin | Aanagement         | of the fin list |
| PARAME       | TERS     | TALYSTS   | STREAMS             | FINS REFERE    | NCE LAYER |                         |                   | REPORTS 😣 VALIDATI | ON              |
| Name         |          | Reference | e #                 | Origin         |           | Calculation mo          | de                |                    |                 |
|              |          | 0         |                     | Standard datab | ase 💌     | From geometry           | etry              |                    |                 |
|              |          |           |                     |                |           | OPerformanc             | e data provid     | led                |                 |

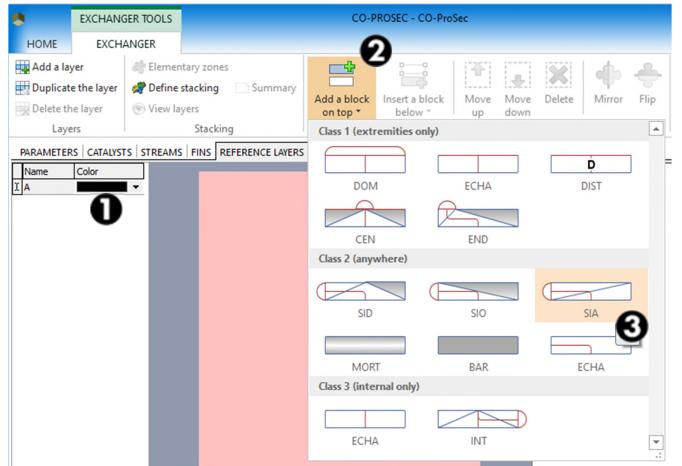
- "Fins" tab
  - ✓ Fin #1 description
  - 2. Give a name
  - 3. Select the "Origin" (Standard database or User)
  - 4. Give a reference number
  - 5. Fill in the characteristics

| Name Reference # | Origin | Calculation mode      |                         |           |       |         |                    |
|------------------|--------|-----------------------|-------------------------|-----------|-------|---------|--------------------|
| Fin #1 1001      | User   | From geometry         | y                       |           |       |         |                    |
| 5 6              | 6      | O Performance d       | lata provided           |           |       |         | <u> </u>           |
| 6 0              | 0      | Туре                  | Right fin               | ~         |       | 7777    | $\mathcal{A}$      |
|                  |        | Height                | 7,13 mm                 | -         | e     | p       |                    |
|                  |        | Thickness             | 0,4 mm                  | -         |       |         |                    |
|                  |        | Fins number per me    | ter 673,2               |           |       |         |                    |
|                  |        | Perforation porosity  | (%) 0                   |           |       |         |                    |
|                  |        | Serration length      | 0 mm                    | -         |       |         |                    |
|                  |        | Metal section correc  | ction 0                 |           |       | -       | Colburn coefficier |
|                  |        | Global efficiency     | 1                       |           | 46    | 0,98874 | 0,06258            |
|                  |        | Fin efficiency is     | taken into account      |           | 122   | 0,39326 | 0,04122            |
|                  |        | Duct diameter         | 0 mm                    |           | 200   | 0,26355 | 0,03266            |
|                  |        |                       |                         |           | 538   | 0,14066 | 0,02048            |
|                  |        | Duct absolute rugos   | -                       | · · · · · | 881   | 0,113   | 0,01643            |
|                  |        | Duct wet perimeter    | 0 mm                    | •         | 1442  | 0,09665 | 0,01337            |
|                  |        | Duct section          | 0 m2                    | •         | 2363  | 0,08753 | 0,01106            |
|                  |        | Ducts number per m    | neter 0                 |           | 6338  | 0,0818  | 0,00797            |
|                  |        | HTC correlations:     |                         |           | 17003 | 0,08171 | 0,00604            |
|                  |        | User code (VBSc       | ript) on the whole area |           | 45614 | 0,0726  | 0,00462            |
|                  |        | Laminar flow          | In-house correlation    | ~         |       |         |                    |
|                  |        | Turbulent flow        | In-house correlation    | ~         |       |         |                    |
|                  |        | Friction factor corre | lations:                |           |       |         |                    |
|                  |        | User code (VBSc       | ript) on the whole area |           |       |         |                    |
|                  |        | Laminar flow          | In-house correlation    | ~         |       |         |                    |
|                  |        | Turbulent flow        | In-house correlation    |           |       |         |                    |

"Fins" tab

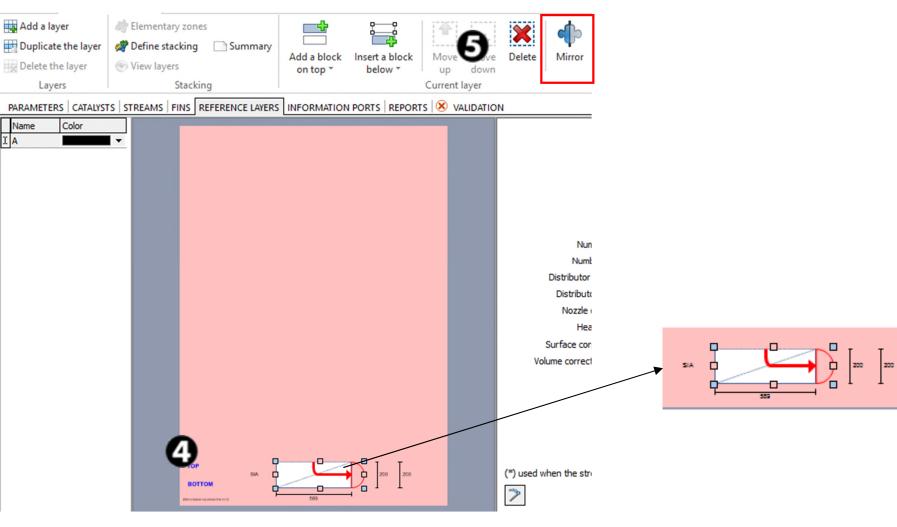

| <ul> <li>Fin #2 description</li> </ul> |  |
|----------------------------------------|--|
|----------------------------------------|--|

|              | 252116    |                |                    | X III XX III            |                     |            |        |
|--------------|-----------|----------------|--------------------|-------------------------|---------------------|------------|--------|
|              | : L       | IST            |                    |                         |                     |            |        |
| Add<br>a fin | Duplicate |                |                    |                         | mport a<br>user fin |            |        |
| PARAME       | TERS CAT  | ALYSTS STREAMS | FINS REFERENCE LAY | ERS INFORMATION P       |                     | ORTS 😣 VAL | DATION |
| Name         | F         | Reference #    | Origin             | Calculation mode        |                     |            |        |
| Fin #1       | 1         | .001           | User 🔹             | O From geometry         |                     |            |        |
| Fin #2       | 7         | 7844           | User 🔽             | O Performance da        | ta provided         |            |        |
| 2            | •         | 0              | €                  | Туре                    |                     | Right fin  | ~      |
|              |           | -              | -                  | Height                  |                     | 7,13 mm    | -      |
|              |           |                |                    | Thickness               |                     | 0,4 mm     | -      |
|              |           |                |                    | Fins number per met     | er                  | 200        |        |
|              |           |                |                    | Perforation porosity    | (%)                 | 0          |        |
|              |           |                |                    | Serration length        |                     | 0 mm       | -      |
|              |           |                |                    | Metal section correct   | tion                | 0          |        |
|              |           |                |                    | Global efficiency       |                     | 1          |        |
|              |           |                |                    | Fin efficiency is ta    | aken into acco      | ount       |        |
|              |           |                |                    | Duct diameter           |                     | 0 mm       | -      |
|              |           |                |                    | Duct absolute rugosi    | ty                  | 0 mm       | -      |
| datab        | base c    | or User)       |                    | Duct wet perimeter      |                     | 0 mm       | -      |
|              |           | /              |                    | Duct section            |                     | 0 m2       | -      |
|              |           |                |                    | Ducts number per me     | eter                | 0          |        |
|              |           |                |                    | HTC correlations:       |                     |            |        |
|              |           |                |                    | User code (VBScri       | ipt) on the wh      | nole area  |        |
|              |           |                |                    | Laminar flow            | In-house co         | rrelation  | $\sim$ |
|              |           |                |                    | Turbulent flow          | In-house co         | rrelation  | $\sim$ |
|              |           |                |                    | Friction factor correla | ations:             |            |        |
|              |           |                |                    | User code (VBScri       | ipt) on the wł      | nole area  |        |
|              |           |                |                    | Laminar flow            | In-house co         | rrelation  | ~      |
|              |           |                |                    | Turbulent flow          | In-house co         | rrelation  | ~      |

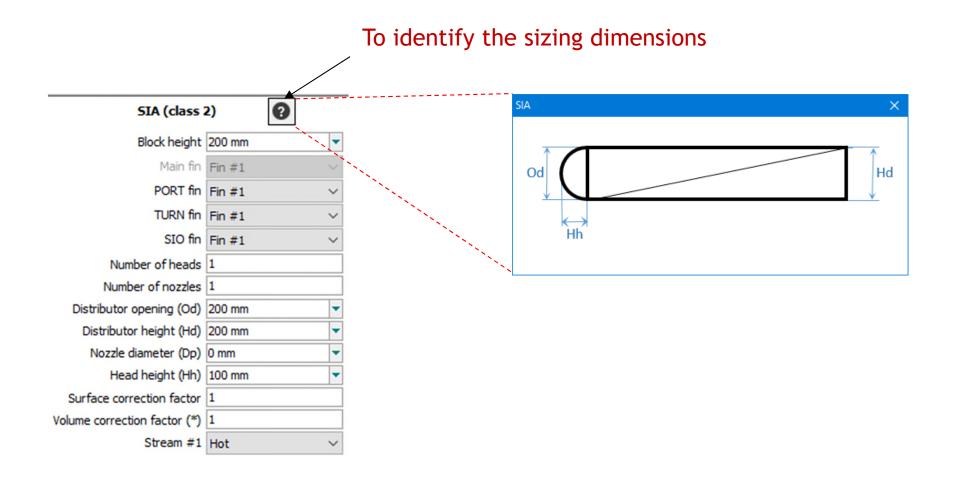

- 1. Click on "Add a fin"
- 2. Give a name
- 3. Select the "Origin" (Standard database or User)
- 4. Select the reference "7844"
- 5. Fill in the characteristics

#### "Reference layer" tab

- $\checkmark$  Describe the reference layer, the meshing and the stacking
- 1. Describe the reference layers
- 2. Visualize the layers
- 3. Adjust the number of discretization cells
- 4. Define the stacking




- "Reference layer" tab
  - ✓ Describe the reference layer "A" (hot stream reference layer)
  - 1. Select a color to easily identify this layer in the stacking description
  - 2. Click on "Add a block on top"
  - 3. Select the first block to add a "SIA" distributor




#### "Reference layer" tab

- 4. Click on the block to select it
- 5. Click on "Mirror" to change the position of its head



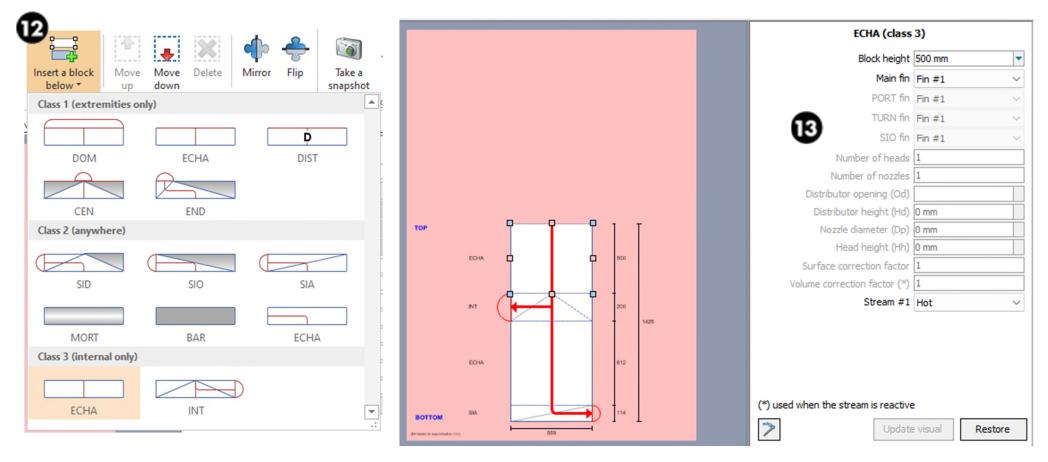
- "Reference layer" tab
  - 6. Fill in its parameters



27

- "Reference layer" tab
  - 7. Click on "Add a block on top" and select a heat exchange zone "ECHA"
  - 8. Select this block and enter its parameters

|   | _                                                      |                                                        |                  |
|---|--------------------------------------------------------|--------------------------------------------------------|------------------|
| 6 |                                                        | ECHA (class                                            | 3)               |
| 1 | <b>* 🙀 👔 🙀 🔶 🚳 .</b>                                   | Block height                                           | 612 mm 🔻         |
|   | Insert a block Move Move Delete Mirror Flip Take a     | Main fin                                               | Fin #1 $\vee$    |
|   | below * up down snapshot<br>Class 1 (extremities only) | PORT fin                                               | Fin #1 $\sim$    |
|   |                                                        | TURN fin                                               | Fin #1 $\sim$    |
| i |                                                        | SIO fin                                                | Fin #1 $\sim$    |
|   | DOM ECHA DIST                                          | Number of heads                                        | 1                |
|   |                                                        | Number of nozzles                                      | 1                |
|   | CEN END                                                | Distributor opening (Od)                               | 0 mm             |
|   | Class 2 (anywhere)                                     | Distributor height (Hd)                                | 0 mm             |
|   |                                                        | Nozzle diameter (Dp)                                   | 0 mm             |
|   |                                                        | Head height (Hh)                                       | 0 mm             |
|   | SID SIO SIA                                            | Surface correction factor                              | 1                |
|   |                                                        | Volume correction factor (*)                           | 1                |
|   | MORT BAR ECHA                                          | Stream #1                                              | Hot $\checkmark$ |
|   | Class 3 (internal only)                                |                                                        |                  |
|   | ECHA INT                                               | ECHA C 612<br>TZ6 (*) used when the stream is reactive |                  |
|   |                                                        | Update                                                 | visual Restore   |


"Reference layer" tab 

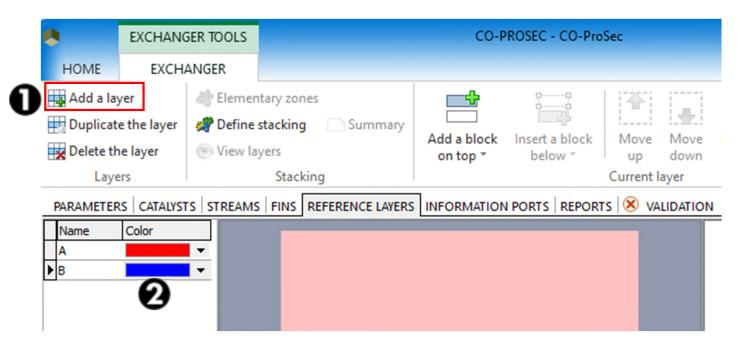
- 9. Click on "Add a block on top" and select an "INT" distributor
- 10. Click on "Mirror" to change the position of its head
- 11. Select this block and enter its parameters

| 9 🕂 🗼 🗶 🔶                                               | ry zones<br>acking Summary<br>rs<br>Stacking<br>Stacking | ete Mirror Flip Take a Print<br>snapshot Drawing ^ |
|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| Add a block Insert a block Move Move Delete Mirror Flip | REFERENCE LAYERS INFORMATION PORTS REPORTS X VALIDATION  | INT (class 3)                                      |
| Class 1 (extremities only)                              |                                                          | Block height 200 mm                                |
|                                                         |                                                          | Main fin #1                                        |
| P                                                       |                                                          |                                                    |
| DOM ECHA DIST                                           |                                                          | TURN fin #2 ~                                      |
|                                                         |                                                          | SIO fin #2 V                                       |
|                                                         |                                                          | Number of heads 1                                  |
| CEN END                                                 |                                                          | Number of nozzles 1                                |
| Class 2 (anywhere)                                      |                                                          | Distributor opening (Od) 200 mm                    |
|                                                         |                                                          | Distributor height (Hd) 200 mm                     |
|                                                         |                                                          | Nozzle diameter (Dp) 0 mm                          |
| SID SIO SIA                                             |                                                          | Head height (Hh) 100 mm                            |
|                                                         |                                                          | Surface correction factor 1                        |
|                                                         |                                                          | Volume correction factor (*) 1                     |
| MORT BAR ECHA                                           |                                                          | Stream #1 Hot 🗸                                    |
| Class 3 (internal only)                                 |                                                          |                                                    |
|                                                         |                                                          | Freed                                              |
| ECHA INT                                                | •                                                        | Sidestream Side_Hot ~                              |
|                                                         |                                                          | Update visual Restore                              |

29

- "Reference layer" tab
  - 12. Click on "Add a block on top" and select a heat exchange zone "ECHA"
  - 13. Select this block and enter its parameters



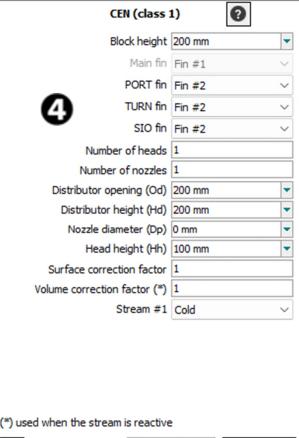

- "Reference layer" tab
  - 14. Click on "Add a block on top" and select an "SID" distributor
  - 15. Click on "Mirror" to change the position of its head
  - 16. Select this block and enter its parameters

| Add a block<br>on top | Insert a block<br>below * | Move | Move<br>down | <b>X</b><br>Delete | d<br>Mirror  | Fli |
|-----------------------|---------------------------|------|--------------|--------------------|--------------|-----|
| Class 1 (extr         | emities only)             |      |              |                    |              | [   |
| DOM                   |                           | ECHA |              |                    | <b>D</b> IST | ]   |
| CEN                   |                           | END  |              |                    |              |     |
| Class 2 (anyw         | vhere)                    |      |              |                    |              |     |
| SID                   |                           | SIO  |              |                    | SIA          | ]   |
| MOR                   |                           | BAR  |              |                    | ECHA         | ]   |
| Class 3 (inter        | rnal only)                |      |              |                    |              |     |
| ECHA                  |                           | INT  |              |                    |              |     |

| king Summary<br>Add a block Insert a block<br>on top * Ibelow Current layer<br>REFERENCE LAYERS INFORMATION PORTS REPORTS VALIDATION<br>Tore so top to the source of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ei its pai                                  | ameter        | 3        |         | ิด         | 3                       |            |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|----------|---------|------------|-------------------------|------------|---------|
| REFERENCE LAYERS INFORMATION PORTS REPORTS VALIDATION<br>SID (class 2)<br>Block height 114 mm<br>Main fin Fin #1<br>PORT fin Fin #2<br>TURN fin Fin #2<br>TURN fin Fin #2<br>SIO fin Fin #2<br>Number of neades 1<br>Number of neades 1<br>Distributor opening (Od) 114 mm<br>Distributor height (Hd) 114 mm<br>Nozzle diameter (Dp) 0 mm<br>Head height (Hb) 57 mm<br>Surface correction factor (*) 1<br>Stream #1 Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y zones<br>cking 📄 Summary<br>s<br>Stacking |               | below *  | up down |            | Mirror Flip             | snapshot   | rint    |
| SID (class 2)       Block height         Block height       114 mm         Main fin       Fin #1         PORT fin       Fin #2         TURN fin       Fin #2         SIO fin       Fin #2         Number of heads       1         Number of nozzles       1         Distributor opening (Od)       114 mm         Nozzle diameter (Dp)       0 mm         Head height (Hd)       114 mm         Nozzle diameter (Dp)       0 mm         Head height (Hd)       57 mm         Surface correction factor (*)       1         Stream #1       Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                           | NFORMATION PO |          |         | N          |                         |            |         |
| TOP       SD       Image: state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |          | _       |            | SID (clas               | c 2)       | 0       |
| Nam fin Fin #1<br>PORT fin Fin #2<br>TURN fin Fin #2<br>SIO fin Fin #2<br>Number of heads 1<br>Number of heads 1<br>Number of nozzles 1<br>Distributor opening (Od) 114 mm<br>Distributor nopening (Od) 114 mm<br>Distributor height (Hd) 114 mm<br>Nozzle diameter (Dp) 0 mm<br>Head height (Hd) 57 mm<br>Surface correction factor 1<br>Volume correction factor (*) 1<br>Stream #1 Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |               |          |         |            |                         |            |         |
| PORT fin #2<br>TURN fin #2<br>Sto fin #2<br>Sto fin #2<br>Sto fin #2<br>Sto fin #2<br>Sto fin #2<br>Number of heads<br>1<br>Distributor opening (Od)<br>114 mm<br>Distributor opening (Od)<br>114 mm<br>Nozzle diameter (Dp)<br>0 mm<br>Head height (Hd)<br>S7 mm<br>Surface correction factor<br>Volume correction factor (*)<br>1<br>Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |               |          |         |            |                         |            |         |
| TOP 50<br>FOR 50 |                                             |               |          |         |            |                         |            |         |
| TOP       SID fin       Fin #2         Number of heads       1         Number of nozzles       1         Distributor opening (Od)       114 mm         Distributor height (Hd)       114 mm         Nozzle diameter (Dp)       0 mm         Head height (Hh)       57 mm         Surface correction factor       1         Not       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |               |          |         |            |                         |            |         |
| Number of heads 1<br>Number of nozzles 1<br>Distributor opening (Od) 114 mm<br>Distributor height (Hd) 114 mm<br>Nozzle diameter (Dp) 0 mm<br>Head height (Hh) 57 mm<br>Surface correction factor 1<br>Volume correction factor (*) 1<br>Stream #1 Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |               |          |         | ิด         | 0                       |            |         |
| TOP       SID       Image: side of the si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |          |         | - <b>-</b> | SIO                     | fin Fin #2 |         |
| TOP       50       Image: stription of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |          |         |            |                         |            |         |
| TOP       SID       Image: Side of the si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |          |         |            |                         |            |         |
| EDIA<br>NOZZe diameter (up) U mm<br>Head height (Hh) 57 mm<br>Surface correction factor 1<br>Volume correction factor (*) 1<br>Stream #1 Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | ı             | <b>.</b> |         |            |                         | -          |         |
| ECHA 612 Head height (Hh) 57 mm<br>Head height (Hh) 57 mm<br>Surface correction factor 1<br>Volume correction factor (*) 1<br>Stream #1 Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOP SID                                     |               |          |         |            |                         |            |         |
| ECHA<br>NT ECHA ECHA ECHA ECHA ECHA ECHA ECHA ECHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |               |          |         |            | •                       |            |         |
| NT COLUMN CONTRCTION Factor (*) 1<br>Stream #1 Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EOIA                                        |               | 900      |         |            |                         |            |         |
| ит 200 1540 Stream #1 Hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |               |          |         |            |                         |            |         |
| ECHA 612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INT                                         |               | 200      |         |            |                         |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | ×             | 1540     |         |            |                         |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |               |          |         |            |                         |            |         |
| (*) used when the stream is reactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ECHA                                        |               | 612      |         |            |                         |            |         |
| (*) used when the stream is reactive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |               |          |         |            |                         |            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |               |          |         | (*) used v | when the stream is reac | tive       |         |
| BOTTOM SIX Update visual Restor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BOTTOM                                      |               | ) 114 1  |         | ~**        | Llod                    | ate visual | Restore |

#### "Reference layer" tab

- ✓ Describe the reference layer "B" (cold stream reference layer)
- 1. Click on "Add a layer" to add a new reference layer
- 2. Select a color to easily identify this layer in stacking description




- "Reference layer" tab
  - 3. Click on "Add a block on top" and select a "CEN" distributor

550

4. Select this block and enter its parameters

| Add a block Insert a b                   |      | Delete Mirror Flip |
|------------------------------------------|------|--------------------|
| on top * below<br>Class 1 (extremities o |      |                    |
|                                          |      | Ď                  |
| DOM                                      | ECHA | DIST               |
|                                          |      | H<br>B             |
| CEN                                      | END  | ۲                  |
| Class 2 (anywhere)                       |      | 2                  |
|                                          |      |                    |
| SID                                      | SIO  | SIA                |
|                                          |      |                    |
| MORT<br>Class 3 (internal only)          | BAR  | ECHA               |
|                                          |      | ž                  |
| ECHA                                     | INT  | T I                |
|                                          |      | <b>ا</b>           |
|                                          |      |                    |

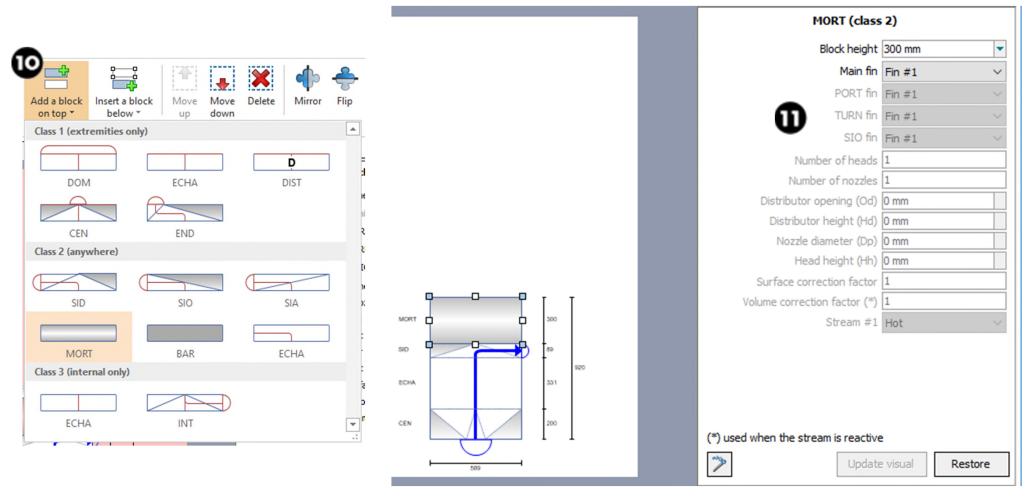


Update visual

Restore

- "Reference layer" tab
  - 5. Click on "Add a block on top" and select a heat exchange zone "ECHA"
  - 6. Select this block and enter its parameters

|                                                             |       | ECHA (class 3)                       |
|-------------------------------------------------------------|-------|--------------------------------------|
| 6 📑 🚺 🖡 💥 💠 🔶 🚳 .                                           |       | Block height 331 mm 💌                |
|                                                             |       | Main fin 🛛 Fin #1 🔍                  |
| Insert a block Move Move Delete Mirror Flip Take a snapshot |       | PORT fin #1 🗸 🗸                      |
| Class 1 (extremities only)                                  |       | TURN fin #1 V                        |
|                                                             |       | SIO fin #1 V                         |
| DOM ECHA DIST                                               |       | Number of heads 1                    |
|                                                             |       | Number of nozzles 1                  |
|                                                             |       | Distributor opening (Od) 0 mm        |
| CEN END                                                     |       | Distributor height (Hd) 0 mm         |
| Class 2 (anywhere)                                          |       | Nozzle diameter (Dp) 0 mm            |
|                                                             |       | Head height (Hh) 0 mm                |
|                                                             |       | Surface correction factor 1          |
| SID SIO SIA                                                 |       | Volume correction factor (*) 1       |
|                                                             |       | Stream #1 Cold 🗸 🗸                   |
| MORT BAR ECHA                                               | 0 0 0 |                                      |
| Class 3 (internal only)                                     |       |                                      |
| ECHA INT                                                    |       | (*) used when the stream is reactive |
|                                                             | 509   | > Update visual Restore              |


34

- "Reference layer" tab
  - 7. Click on "Add a block on top" and select a "SID" distributor
  - 8. Click on "Mirror" to change the position of its head
  - 9. Select this block and enter its parameters

|                                        | j 🕺 🙀 | <b>X</b>      | Ę   |
|----------------------------------------|-------|---------------|-----|
| Add a block Insert a<br>on top * below |       | Delete Mirror | Fli |
| Class 1 (extremities o                 | nly)  |               |     |
|                                        |       | Ď             | ]   |
| DOM                                    | ECHA  | DIST          |     |
|                                        |       |               |     |
| CEN                                    | END   |               |     |
| Class 2 (anywhere)                     | LIND  |               |     |
|                                        |       |               | ]   |
| SID                                    | SIO   | SIA           |     |
|                                        |       |               | )   |
| MORT                                   | BAR   | ECHA          |     |
| Class 3 (internal only)                |       |               |     |
|                                        |       |               |     |
| ECHA                                   | INT   |               |     |

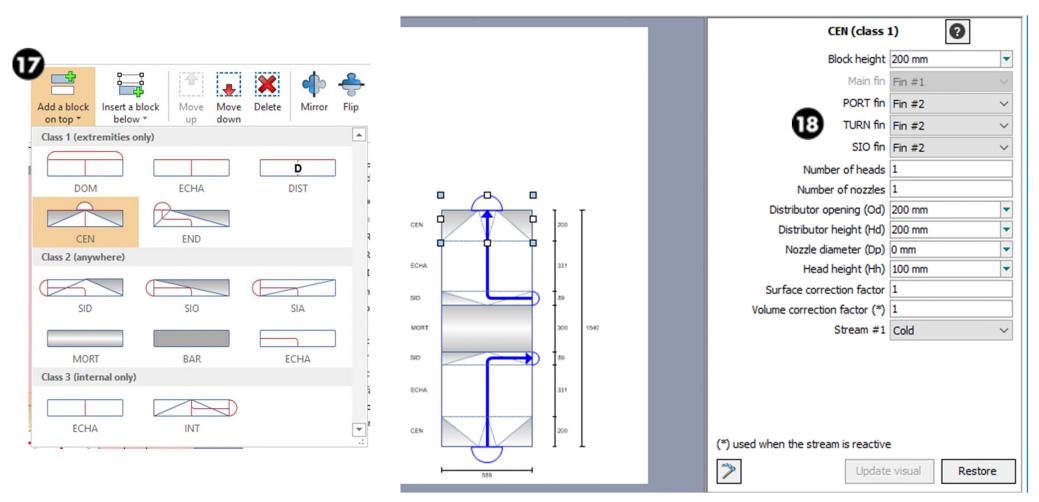
| spo      | ananiet                 |                           |                          |                      | •            | 3             |                   |                              |       |    |
|----------|-------------------------|---------------------------|--------------------------|----------------------|--------------|---------------|-------------------|------------------------------|-------|----|
| mmary    | Add a block<br>on top * | Insert a block<br>below * | Move<br>up<br>Current la | Move<br>down<br>ayer | XX<br>Delete | do<br>Mirror  | <del>- Flip</del> | Take a<br>snapshot<br>Drawir | Print | ^  |
| E LAYERS | INFORMATION             |                           | ts 🗵 🗙 vai               | LIDATION             |              |               |                   |                              |       |    |
|          |                         |                           |                          |                      |              |               | SID (clas         | ss 2)                        | 0     |    |
|          |                         |                           |                          |                      |              |               | Block heig        | ht 89 mm                     |       | -  |
|          |                         |                           |                          |                      |              |               |                   | fin Fin #1                   |       | ~  |
|          |                         |                           |                          |                      |              | -             | PORT              | fin Fin #2                   |       | ~  |
|          |                         |                           |                          |                      |              | 0             | TURN              | fin Fin #2                   |       | ~  |
|          |                         |                           |                          |                      |              | •             | SIO               | fin Fin #2                   |       | ~  |
|          |                         |                           |                          |                      |              | Num           | ber of hea        | ds 1                         |       |    |
|          |                         |                           |                          |                      |              | Numb          | er of nozzl       | es 1                         |       |    |
|          |                         |                           |                          |                      |              | Distributor   | opening (O        | d) 89 mm                     |       | -  |
|          |                         |                           |                          |                      |              | Distributo    | or height (H      | id) 89 mm                    |       | -  |
|          |                         |                           |                          |                      |              | Nozzle o      | diameter (D       | ) 0 mm                       |       | -  |
|          |                         |                           |                          |                      |              | Hea           | d height (H       | lh) 44,5 mm                  |       | -  |
|          |                         |                           |                          |                      |              | Surface corr  | rection fact      | tor 1                        |       |    |
|          |                         |                           |                          |                      | Vo           | lume correct  |                   |                              |       |    |
|          |                         |                           |                          |                      |              |               | Stream a          | #1 Cold                      |       | ~  |
| SID 80   |                         | ₽ [∾ T                    |                          |                      |              |               |                   |                              |       |    |
| Ĭ        | ľ                       |                           |                          |                      |              |               |                   |                              |       |    |
| ECHA     |                         | 231 620                   |                          |                      |              |               |                   |                              |       |    |
| CEN      |                         | 200                       |                          |                      |              |               |                   |                              |       |    |
|          | Y                       |                           |                          |                      | (*) used v   | when the stre | eam is reac       | tive                         |       |    |
| ۰        | 509                     | -                         |                          |                      | >            |               | Upd               | late visual                  | Resto | re |

- "Reference layer" tab
  - 10. Click on "Add a block on top" and select a "MORT" zone, i.e. a zone in which no fluid flows (only conduction occurs)
  - 11. Select this block and enter its parameters



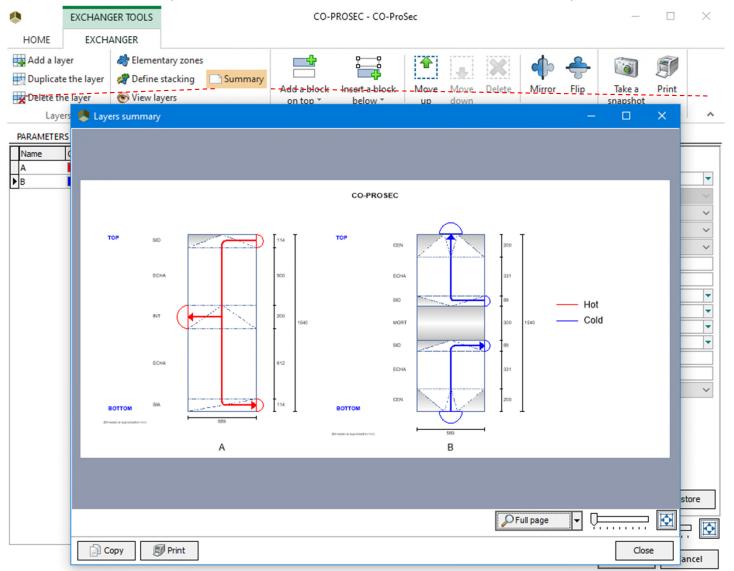
- "Reference layer" tab
  - 12. Click on "Add a block on top" and select a "SID" distributor
  - 13. Click on "Mirror" to change the position of its head
  - 14. Select this block and enter its parameters

| Add a block                | Insert a block | Move | -<br>Move | X<br>Delete | d<br>Mirror | Fli |
|----------------------------|----------------|------|-----------|-------------|-------------|-----|
| on top *<br>Class 1 (extra | below *        | up   | down      |             | 1           |     |
| Class T (EXTIN             | ennues only/   |      |           |             |             |     |
|                            |                |      |           |             | Ď           | 1   |
| DOM                        |                | ECHA |           |             | DIST        | ,   |
|                            |                |      |           |             |             |     |
|                            |                |      |           |             |             |     |
| CEN                        |                | END  |           |             |             |     |
| Class 2 (anyw              | here)          |      |           |             |             |     |
|                            |                | -    |           |             |             | 1   |
| SID                        |                | SIO  |           | <u> </u>    | SIA         | J   |
| 510                        |                | 510  |           |             | SIA         |     |
|                            |                |      |           |             | <b>_</b>    |     |
| MORT                       |                | BAR  |           |             | ECHA        | ·   |
| Class 3 (inter             | nal only)      |      |           |             |             |     |
|                            |                |      |           |             |             |     |
|                            |                |      |           |             |             |     |
| ECHA                       |                | INT  |           |             |             |     |


| ımmary    | Add a block<br>on top * | Insert a block<br>below * | Move<br>up<br>Current | Move<br>down<br>layer | Delete     | Mirror      | Flip        | Take a<br>snapshot<br>Drawin | Print   |
|-----------|-------------------------|---------------------------|-----------------------|-----------------------|------------|-------------|-------------|------------------------------|---------|
| CE LAYERS |                         | PORTS                     | ts 🗴 va               |                       | 1          |             |             |                              |         |
|           |                         |                           |                       |                       |            |             | SID (cl     | ass 2)                       | 0       |
|           |                         |                           |                       |                       |            |             | Block he    | ight 89 mm                   |         |
|           |                         |                           |                       |                       |            |             | Mair        | n fin Fin #1                 |         |
|           |                         |                           |                       |                       |            |             | PORT        | T fin Fin #2                 | ~       |
|           |                         |                           |                       |                       | U U        | 9           | TURM        | I fin #2                     | ~       |
|           |                         |                           |                       |                       |            |             | SIC         | ) fin Fin #2                 | ~       |
|           |                         |                           |                       |                       |            | Nur         | mber of he  | ads 1                        |         |
|           |                         |                           |                       |                       |            | Num         | ber of noz  | zles 1                       |         |
|           |                         |                           |                       |                       |            | Distributor | opening (   | (Od) 89 mm                   | -       |
|           |                         |                           |                       |                       |            | Distribut   | or height ( | (Hd) 89 mm                   | -       |
|           |                         |                           |                       |                       |            | Nozzle      | diameter (  | (Dp) 0 mm                    | -       |
|           |                         |                           |                       |                       |            | Hea         | ad height ( | (Hh) 44,5 mm                 | -       |
| SHD B     | -                       | ∎ I∞ I                    |                       |                       | 1          | Surface cor | rection fa  | ctor 1                       |         |
| 9         | 0                       |                           |                       |                       | Vol        | ume correc  | tion factor | (*) 1                        |         |
| MORT      |                         | 200                       |                       |                       |            |             | Stream      | #1 Cold                      | ~       |
| sio       |                         | 5 50                      |                       |                       |            |             |             |                              |         |
|           |                         | 1009                      |                       |                       |            |             |             |                              |         |
| есна      |                         | 231                       |                       |                       |            |             |             |                              |         |
| CEN       |                         | 200                       |                       |                       |            |             |             |                              |         |
| CEN       | $\gamma \gamma$         |                           |                       |                       | (*) used w | hen the str | eam is rea  | ctive                        |         |
| -         |                         | 4                         |                       |                       | *          |             | Un          | date visual                  | Restore |
|           |                         |                           |                       |                       | -          |             |             |                              |         |

37

- "Reference layer" tab
  - 15. Click on "Add a block on top" and select a heat exchange zone "ECHA"
  - 16. Select this block and enter its parameters

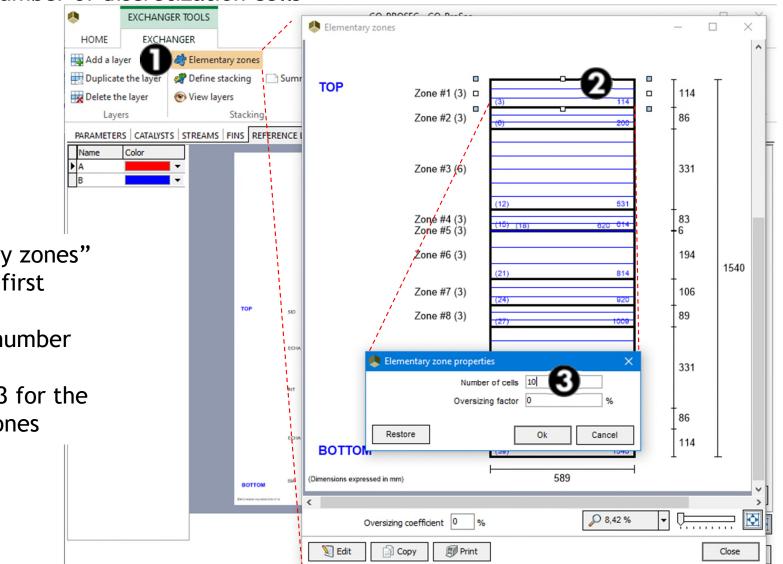

| 15                                                 |                  | ECHA (class 3)                       |
|----------------------------------------------------|------------------|--------------------------------------|
| Tin 👔 🔛 🗰 🖓 🖓                                      |                  | Block height 331 mm                  |
| Insert a block Move Move Delete Mirror Flip Take a |                  | Main fin #1 V                        |
| below 🔻 up down snapshot                           |                  | PORT fin #1 V                        |
| Class 1 (extremities only)                         |                  | 16 TURN fin #1                       |
|                                                    |                  | SIO fin #1 V                         |
| DOM ECHA DIST                                      |                  | Number of heads 1                    |
|                                                    |                  | Number of nozzles 1                  |
|                                                    |                  | Distributor opening (Od) 0 mm        |
| CEN END                                            | 00               | Distributor height (Hd) 0 mm         |
| Class 2 (anywhere)                                 |                  | Nozzle diameter (Dp) 0 mm            |
|                                                    | ЕСНА 0 201       | Head height (Hh) 0 mm                |
|                                                    |                  | Surface correction factor 1          |
| SID SIO SIA                                        |                  | Volume correction factor (*) 1       |
|                                                    | MORT 200<br>1340 | Stream #1 Cold V                     |
| MORT BAR ECHA                                      | 540 59           |                                      |
| Class 3 (internal only)                            |                  |                                      |
| ECHA INT                                           | CEN 200          | (*) used when the stream is reactive |
|                                                    | 509              | Update visual     Restore            |

- "Reference layer" tab
  - 17. Click on "Add a block on top" and select a "CEN" distributor
  - 18. Select this block and enter its parameters



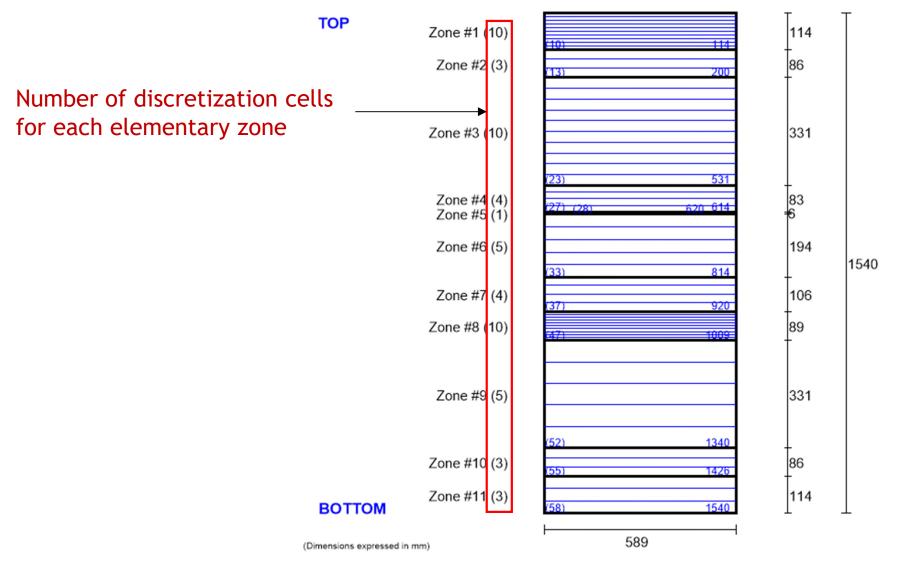

#### "Reference layer" tab

Click on "Summary" to visualize the whole reference layers




#### "Reference layer" tab

 $\checkmark$  Click on "View layers" to visualize the sketch of the heat exchanger (head

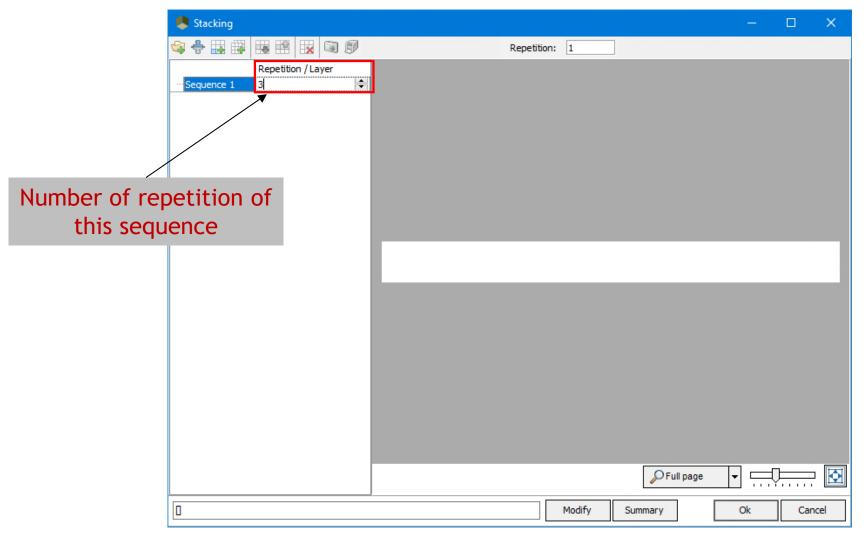



- "Reference layer" tab
  - ✓ Adjust the number of discretization cells

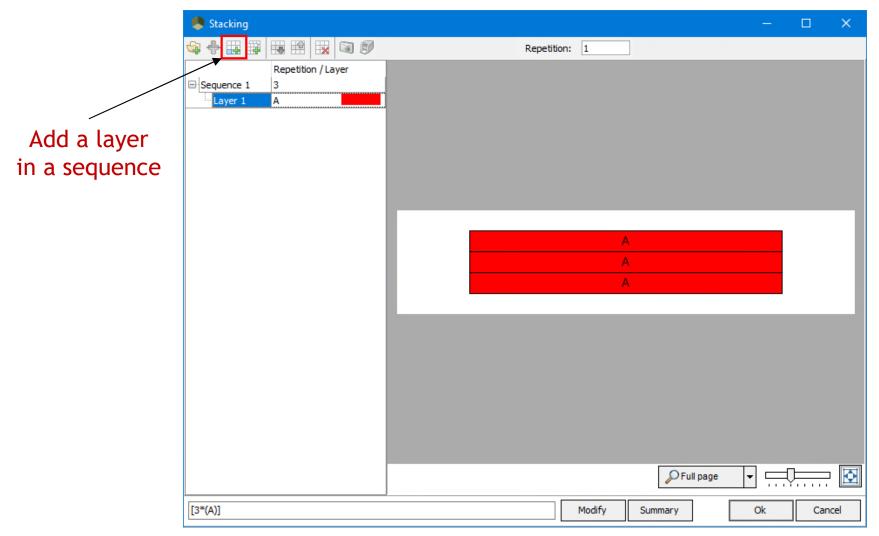


- 1. Click on "Elementary zones"
- 2. Double-click on the first elementary zone
- 3. Modify the default number of cells
- 4. Repeat point 2 and 3 for the other elementary zones

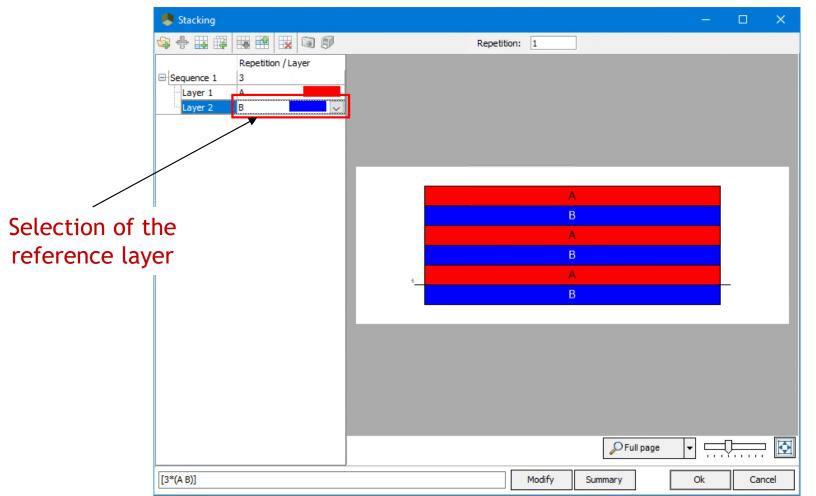
- "Reference layer" tab
  - $\checkmark$  Adjust the number of discretization cells



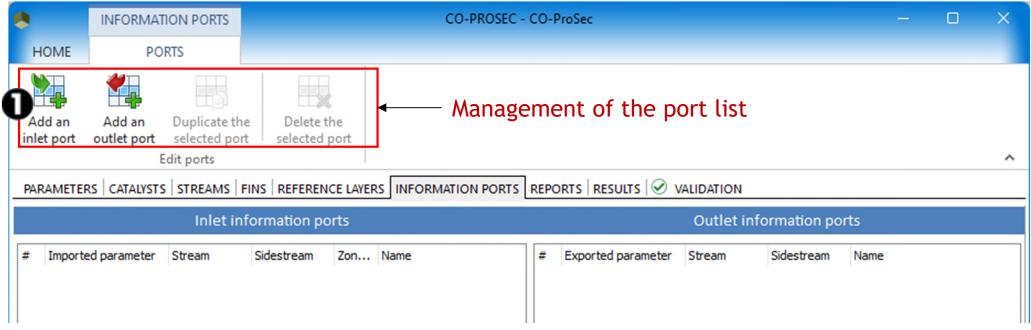

- "Reference layer" tab
  - ✓ Define the stacking: A B A B A B (6 layers)
  - 1. Click on "Add a new sequence"


|                   | 🐥 Stacking          | - 🗆                           | ×                        |
|-------------------|---------------------|-------------------------------|--------------------------|
| Add a sequence —— | ▶ 🚭 😤 🖽 🕮 🖽 🛱 🔣 🗐 🗊 | Repetition: 1                 |                          |
|                   | Repetition / Layer  |                               |                          |
|                   |                     | Visualization of the stacking |                          |
|                   |                     |                               |                          |
|                   |                     |                               |                          |
|                   |                     |                               |                          |
|                   |                     |                               |                          |
|                   |                     |                               |                          |
|                   |                     | PFull page                    | $\mathbf{\underline{S}}$ |
|                   | N                   | Modify Summary Ok Cance       | al                       |

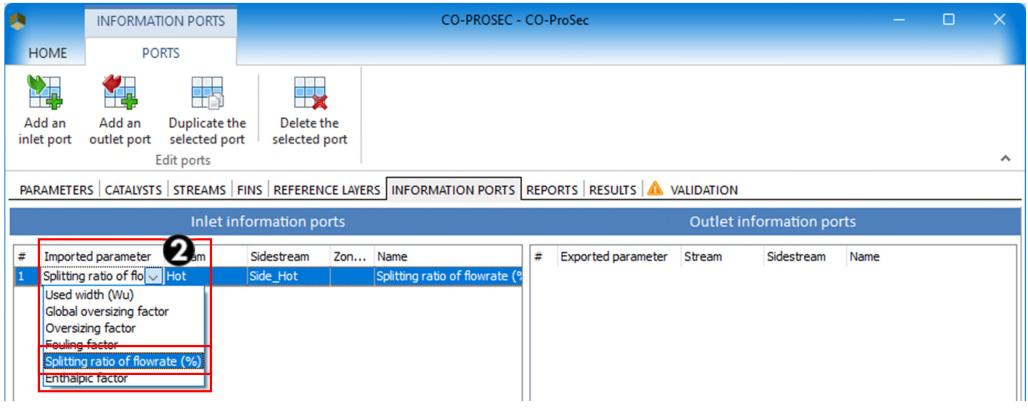
44


- "Reference layer" tab
  - ✓ Define the stacking: A B A B A B (6 layers)
  - 2. Specify 3 repetition for the "Sequence 1"



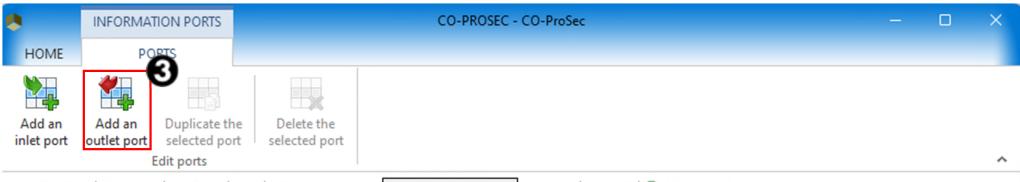

- "Reference layer" tab
  - ✓ Define the stacking: A B A B A B (6 layers)
  - 3. Click on "Add a new layer in the selected sequence"




- "Reference layer" tab
  - ✓ Define the stacking: A B A B A B (6 layers)
  - 4. Click a second time on "Add a new layer in the selected sequence"
  - 5. With the menu of the "Layer 2", select the reference layer "B"



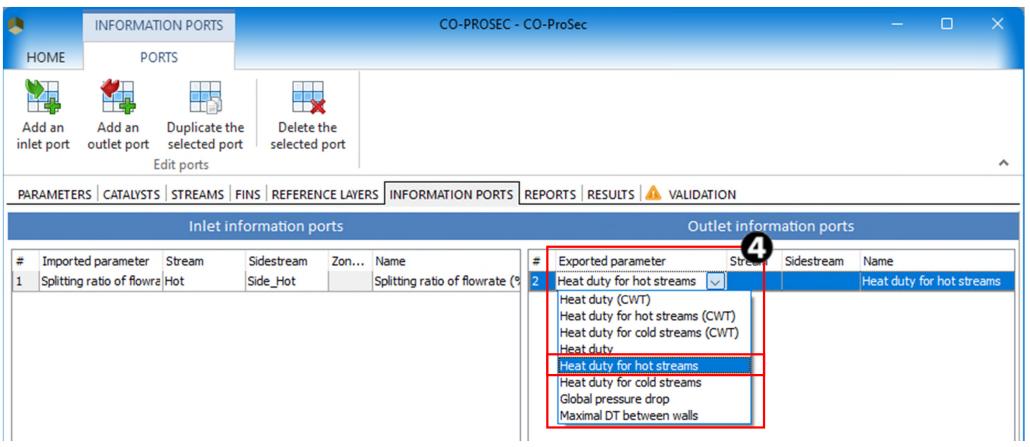
- "Information ports" tab
  - Add inlet/outlet information ports
  - 1. Click "Add an inlet port"




- "Information ports" tab
- 2. Select the parameter to import from another unit operation of the simulation for the inlet information port: the imported value will replace the value defined in the interface



49


- "Information ports" tab
- 3. Click "Add an outlet port"



PARAMETERS CATALYSTS STREAMS FINS REFERENCE LAYERS INFORMATION PORTS REPORTS RESULTS VALIDATION

|        |                                                 | Inlet in      | formation po           | rts |                                        |   | C                  | Outlet inform | nation ports |      |
|--------|-------------------------------------------------|---------------|------------------------|-----|----------------------------------------|---|--------------------|---------------|--------------|------|
| #<br>1 | Imported parameter<br>Splitting ratio of flowra | Stream<br>Hot | Sidestream<br>Side_Hot |     | Name<br>Splitting ratio of flowrate (% | # | Exported parameter | Stream        | Sidestream   | Name |
|        |                                                 |               |                        |     |                                        |   |                    |               |              |      |

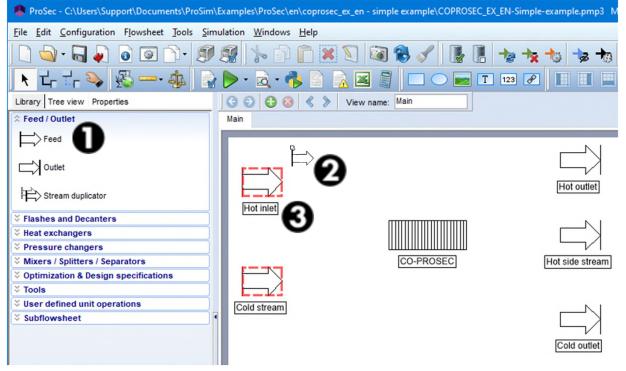
- "Information ports" tab
- 4. Select the parameter to export



#### "Validation" tab

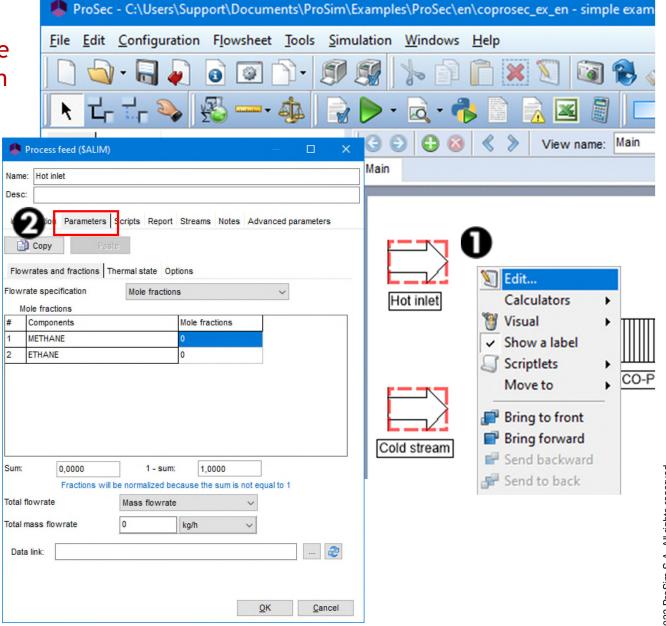
 The validation tab lists the eventual errors. At this point, errors are present due to the lack of material connections. To solve this problem, close all ProSec windows by clicking on "Ok" button.

| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CO-PROSEC - CO-ProSec                                      | - 1 |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----|--------|
| HOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                            |     |        |
| Import       Export         File       Synopsis         PARAMETERS       CATALYSTS    Streams Fine Fine Fine Fines F                                                                                                                                                | INFORMATION PORTS REPORTS XALIDATION                       |     | ^      |
| Path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Message                                                    |     |        |
| Private parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |     |        |
| Reference layers     Constant of the second se | All layers shall have the same length.                     |     |        |
| Distributor height (Hd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The distributor height shall be equal to the block height. |     |        |
| — 🛞 в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The circuit is not valid.                                  |     |        |
| Elementary zones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elementary zones shall be calculated.                      |     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |     |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ok                                                         | (   | Cancel |


Two process feeds and three process outlets are needed for this example.

1- Click on "Process feed" icon in the library category "Feed / Product stream" to select a process feed unit operation.

2- Move the mouse onto the drawing sheet and reach the desired position.


3- Click again, to release the unit.

4- Repeat to add the second process feed and the three process outlets



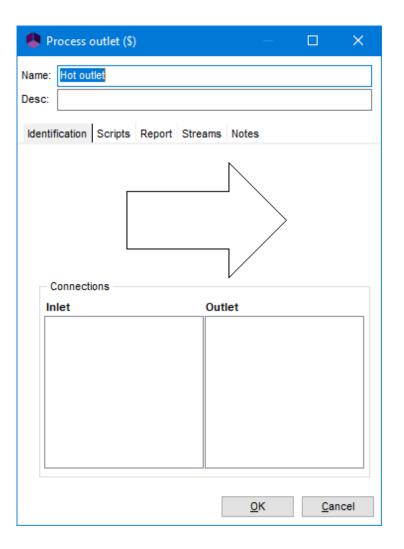
To configure a process feed:

- 1. Double-click on its icon on the flowsheet or select "Edit..." in the contextual menu.
- 2. Press the "Parameters" tab.



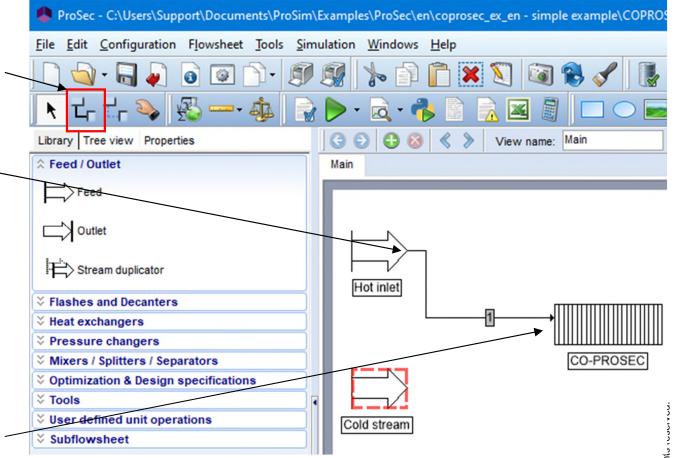
#### Hot stream inlet characteristics

| •     | Process feed (\$ALIM)                  |               |                | $ \Box$ $>$               | < | Champe the default         |
|-------|----------------------------------------|---------------|----------------|---------------------------|---|----------------------------|
| Nam   | e: Hot inlet                           |               |                |                           |   | Change the default         |
| Des   |                                        |               |                |                           |   | name (option)              |
| l     | ntification Parameters S<br>Copy Paste |               |                | vanced parameters         |   |                            |
|       | wrates and fractions The               | Mass fraction |                | ✓ ←                       | - | Select "Mass fraction"     |
|       | Mass fractions                         | made made     |                |                           |   | Select Mass Haction        |
| #     | Components                             |               | Mass fractions |                           |   |                            |
| 1     | METHANE                                |               | 0,5            | ▲                         |   | Fill in the mass fractions |
| 2     | ETHANE                                 |               | 0,5            |                           |   | The mass mactions          |
| Sum   | 1,0000                                 | 1 - sum:      | 0,0000         | ]                         |   |                            |
| Total | flowrate                               | Mass flowrate | ~              | ◀                         |   | Select "Mass flowrate"     |
| Total | mass flowrate                          | 4790,000000   | kg/h ~         |                           |   |                            |
| Da    | ta link:                               |               |                | 2                         |   |                            |
|       |                                        |               |                |                           |   | Fill in the mass flow rate |
|       |                                        |               | <u>(</u>       | <u>O</u> K <u>C</u> ancel |   |                            |


#### Hot stream inlet characteristics

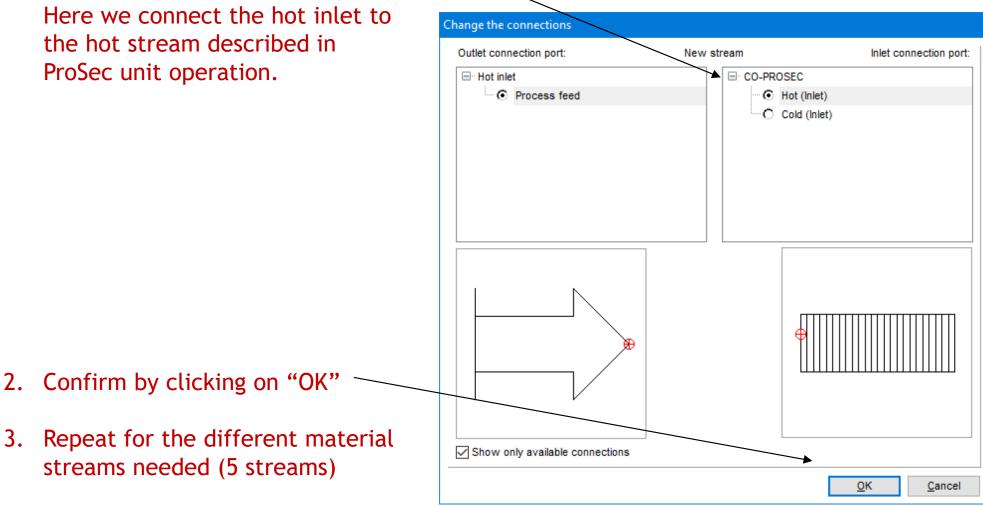
| Process feed (\$ALIM)         |                  |                | -          |           | ×  |
|-------------------------------|------------------|----------------|------------|-----------|----|
| Name: Hot inlet               |                  |                |            |           |    |
| Desc:                         |                  |                |            |           |    |
|                               |                  |                |            |           |    |
| Identification Parameters Scr | ipts Report S    | treams Notes A | dvanced pa | arameters |    |
| Copy Paste                    |                  |                |            |           |    |
|                               |                  |                |            |           |    |
| Flowrates and fractions Therr | nal state Option | ns             |            |           |    |
| Data type                     |                  |                |            |           |    |
| Temperature and pressure      | ~                |                |            |           |    |
| Temperature specification     |                  |                |            |           |    |
| Supplied                      |                  |                |            |           |    |
| O Bubble point temperature at |                  |                |            |           |    |
| O Dew point temperature at s  | pecified pressur | e              |            |           |    |
| Temperature                   | 299              | к ~            | ←          |           |    |
|                               |                  |                |            |           |    |
| Pressure specification        |                  |                |            |           |    |
| O Bubble point pressure at sp | ecified temperat | ure            |            |           |    |
| O Dew point pressure at spec  | ified temperatur | e              |            |           |    |
| Pressure                      | 69,4             | bar v          | [ ←        |           |    |
|                               |                  |                | 1          |           |    |
|                               |                  |                |            |           |    |
|                               |                  |                |            |           |    |
| Data link:                    |                  |                |            | 6         | 2  |
|                               |                  |                |            |           |    |
|                               |                  |                |            |           |    |
|                               |                  |                | <u>0</u> K | Canc      | al |
|                               |                  |                | UK         | Canc      |    |

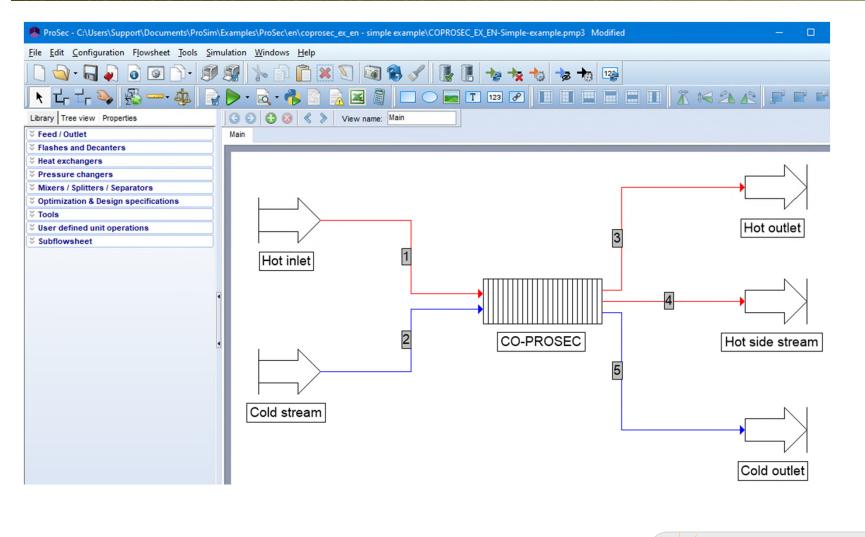
- Cold stream inlet characteristics
  - $\checkmark$  Same characteristics as the hot stream except the temperature


|                 | eed (\$ALIM1) |                       |         |       |          |              | × |
|-----------------|---------------|-----------------------|---------|-------|----------|--------------|---|
| ame: Cold st    | ream          |                       |         |       |          |              |   |
| Desc:           |               |                       |         |       |          |              |   |
| Identification  | Baramatara    | Scripts Report        | Streame | Noton | Advance  | d paramatar  |   |
|                 | Farameters    | Scripts Report        | Sucanis | NOICS | Auvalice | u parameter: | • |
| 📄 Сору          | Past          | e.                    |         |       |          |              |   |
| Flowrates and   |               | ermal state           | otions  |       |          |              |   |
| Data type       |               |                       |         |       |          |              |   |
| Temperature a   | and pressure  | ~                     |         |       |          |              |   |
|                 |               |                       |         |       |          |              |   |
| Temperature     | specification |                       |         |       |          |              |   |
| Supplied        |               |                       |         |       |          |              |   |
|                 |               | at specified pro      |         |       |          |              |   |
| O Dew point     | temperature a | t specified pres      | sure    |       | <u> </u> |              |   |
| Temperature     |               | 267                   | к       | •     | ~        |              |   |
|                 |               |                       |         |       |          |              |   |
| Pressure spe    | cification    |                       |         |       |          |              |   |
| <u>Supplied</u> |               |                       |         |       |          |              |   |
|                 |               | specified temperators |         |       |          |              |   |
| O Dew point     | pressure at s | pecined tempera       | iture   |       |          |              |   |
| Pressure        |               | 69,4                  | bar     | •     | ~        |              |   |
|                 |               |                       |         |       |          |              |   |
|                 |               |                       |         |       |          |              |   |
|                 |               |                       |         |       |          |              |   |
|                 |               |                       |         |       |          |              | æ |
| Data link:      |               |                       |         |       |          |              |   |
| Data link:      |               |                       |         |       |          |              |   |
| Data link:      |               |                       |         |       |          |              |   |

- Process outlets
  - $\checkmark$  No parameters are needed for process outlets

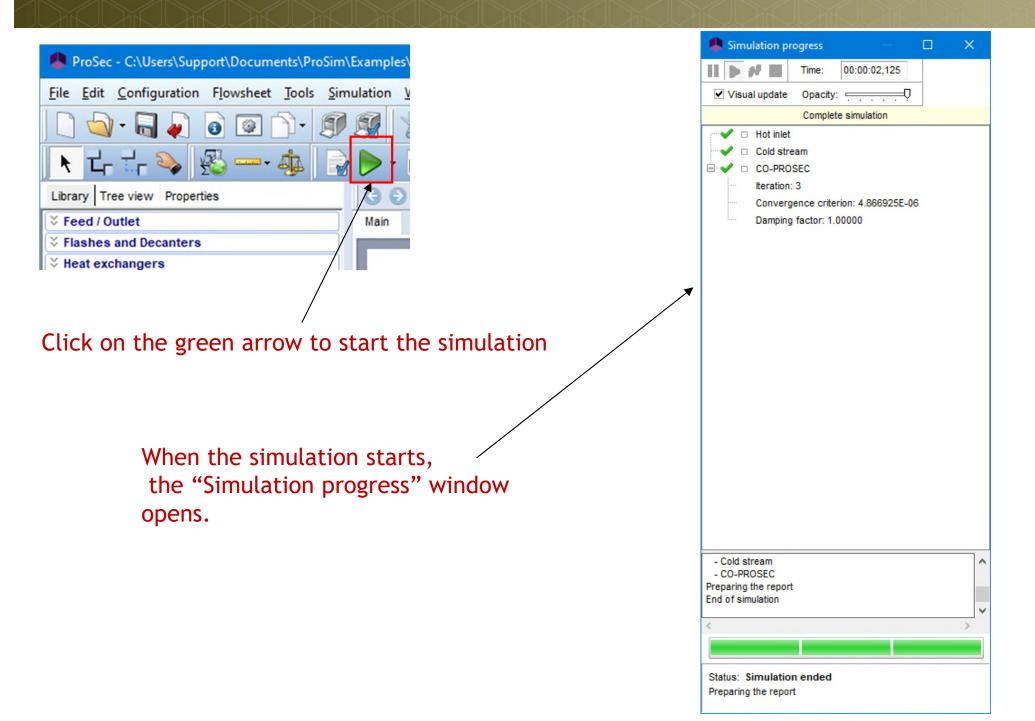



- 1. Select the "Create a material stream" icon
- 2. Select the first unit operation (source) by clicking on it


3. Select the connected unit operation (target) by clicking on it as well



© 2023 ProSim S.A. All rights to we


1. Select to which stream described in ProSec unit operation you want to connect the process feed. Here we connect the hot inlet to the hot stream described in ProSec unit operation.



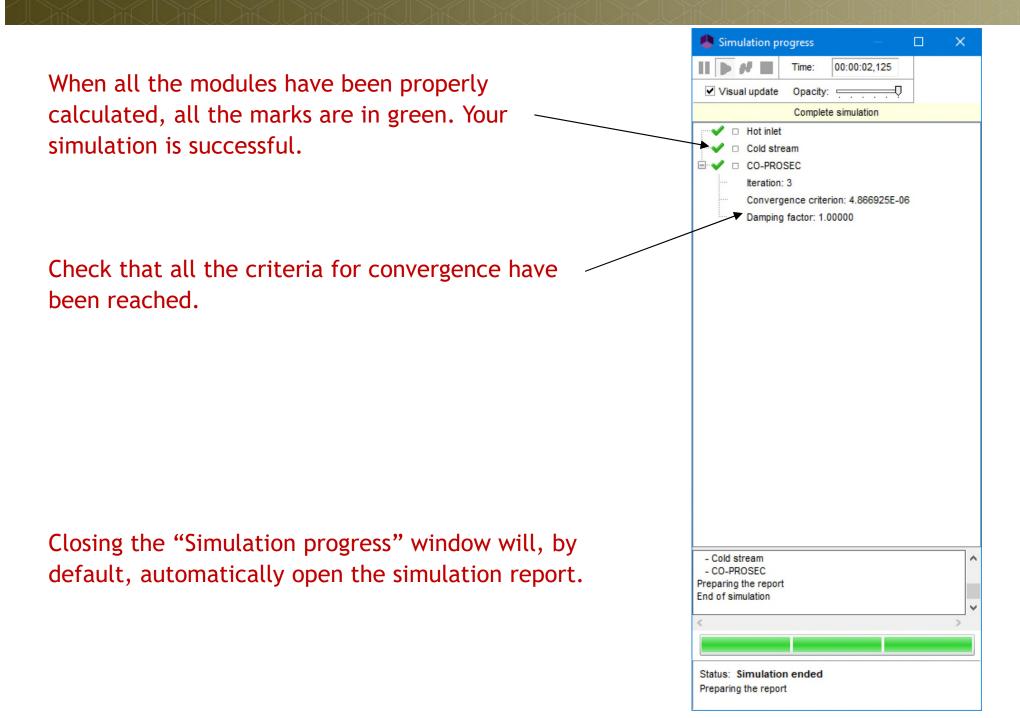


Material streams can be colored in order to ease the reading of the flowsheet. Simply right click on the stream to access the option.

# Step 4: Running the simulation



© 2023 ProSim S.A. All rights reserved.


# Step 4: Running the simulation

During the calculation, different symbols and indications will appear and disappear in the "Simulation progress" window and in the drawing area.

- A green validation mark indicates that the module has been correctly calculated
- A blue arrow indicates that calculation is in progress
- A blue question mark indicates that the module has not been calculated yet
- 🎸 🔝 A red cross indicates a convergence error

| Simulation progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | - 0 🛛            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| Image: Second | Name of the Rem. |                  |
| Reading data<br>Checking data<br>Receiving calculation sequence<br>Smulation in progress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                  |
| Unit operation "Hot inlet" converged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | Pfull page 🔹 🚃 🐼 |

# Step 4: Running the simulation



## Step 5: Reports generated

- A. ProSec unit operation tabulated results
- B. ProSec unit operation graphical results
- C. ProSimPlus general reports

To consult the reports generated by ProSec unit operation:

- Double-click on its icon on the flowsheet or select "Edit..." in the contextual menu
- 2. Press the "Parameters" tab

0

Synopsis

Export...

PARAMETERS CATALYSTS STREAMS FINS

- 3. Press the "Edit..." button
- 4. Press the "Reports" tab

HOME

Import...

Name Validation

Data

File

|                                 | ProSec - Unnamed.pmp3 Modified                                                          |                                                              |                           |
|---------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|
| ts generated                    | <u>File Edit Configuration Flowsheet To</u>                                             | ools <u>S</u> imulation <u>W</u> indows <u>H</u> elp         |                           |
| ation:                          | 🗋 🔄 - 🔚 🥥 💿 🗅                                                                           | · 🗊 🛒 🍾 🗗 🚺                                                  | K 🔪 🐼 🏀 🖌 🛛 🖟 🕅           |
| its icon on the                 | 📐 다 다 🗞 🐼 🛶 🍕                                                                           | 🔉 📄 - 🗟 - 👘 🖹                                                | 🗟 📓 📃 🔾 📼 T               |
| ect "Edit" in                   | Library Tree view Properties                                                            | G 🖸 🔂 🚳 < 🔌 🗸                                                | /iew name: Main           |
| nenu 🚽                          | Seed / Outlet                                                                           | Main                                                         |                           |
| neters" tab 📍                   | )-ProSec (\$XTMO)                                                                       | – O X                                                        |                           |
| " button                        | CO-PROSEC                                                                               |                                                              |                           |
|                                 | Brazed plate-fin heat-exchanger                                                         |                                                              |                           |
| rts" tab                        | Parameters Reports Scripts Report Streams No                                            | tes Advanced parameters                                      | $\mathbb{C}^{\mathbb{C}}$ |
| Spe                             | cifications management                                                                  | Thermodynamics                                               | $\downarrow$              |
| 6                               | Open the edition window of the unit operation<br>in order to visualize or to modify its | Thermodynamics Thermo. version 1.1                           | Edit                      |
|                                 | parameters.                                                                             |                                                              | Calculators >             |
| De                              | tails Visualize the registered details of the unit operation on your computer.          | Output streams calculators<br>O Use the same for all streams | CC 🖉 Visual 🔹 🕨           |
|                                 | operation on your computer.                                                             | Default calculator                                           | Show a label              |
|                                 | Open the edition window of the unit operation                                           | br each stream                                               | Scriptlets                |
|                                 | CO-PROSEC - CO-ProSec                                                                   | m Model                                                      | Move to +                 |
|                                 |                                                                                         |                                                              | 📰 Bring to front          |
| Wumerical parameters            | *                                                                                       |                                                              | Bring forward             |
|                                 | All 🔍 Input                                                                             |                                                              | F Send backward           |
| Initialization parameters       | Conversion 🙈 Output                                                                     |                                                              | 🚰 Send to back            |
| Result parameters               | tool                                                                                    |                                                              | 99                        |
| Document                        | Units                                                                                   | OK Cancel                                                    | All                       |
| 5   FINS   REFERENCE LAYERS   I |                                                                                         |                                                              |                           |
|                                 | -                                                                                       |                                                              | 0<br><u>5</u><br>7        |

#### • "Simulation" contains the main results:

- $\checkmark$  Report on the input data
- ✓ Results for the "Common Wall Temperature" calculation mode (initialization of ProSec rigorous calculations): inlet & outlet temperatures & vapor fraction, heat duty exchanged
- ProSec results: inlet & outlet temperatures & vapor fraction, heat duty exchanged
- ✓ Pressure drops calculation

✓ ...

| ame                              |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
|----------------------------------|-------------------------------------|-------------------------------------|---------------------------------------------------------------|-----------------------------------------------|-----------------------------------|---------------------------------|----------------------------------|----------------------------------------|-------------------|------|--|
| lidation                         |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
| ata                              |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
| is distribution                  | S                                   |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   | <br> |  |
| mulation                         |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
| storic                           |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
| nvergence                        |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
| asses of criter                  | ria                                 |                                     |                                                               |                                               |                                   |                                 | ^                                |                                        |                   |      |  |
| ZONE 11                          | -423.63                             | 0 1                                 | 528.415                                                       |                                               |                                   |                                 | ~                                |                                        |                   |      |  |
|                                  |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     |                                                               |                                               |                                   |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     | RESULTS A                                                     | BSTRACT                                       |                                   |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     | RESULTS A<br>RIGORC                                           | BSTRACT                                       | I<br>I                            |                                 |                                  |                                        |                   |      |  |
|                                  |                                     | 3                                   | RESULTS A                                                     | BSTRACT                                       | I<br>I                            |                                 |                                  |                                        |                   |      |  |
|                                  |                                     |                                     | RESULTS A<br>RIGORC                                           | BSTRACT                                       | I<br>I                            |                                 |                                  |                                        |                   |      |  |
| STREAM                           | FLOW                                | 1                                   | RESULTS A<br>RIGORC                                           | ABSTRACT<br>DUS                               | 1                                 | ATURE                           | HE                               | I DUTY                                 |                   |      |  |
| STREAM<br>NAME                   | RATE                                | I<br>VAPOUR                         | RESULTS A<br>RIGORO                                           | ABSTRACT<br>DUS                               | I<br>I<br>EMPERI                  | в                               |                                  |                                        |                   |      |  |
| NAME                             | RATE (kg/s)                         | VAPOUR<br>INLET                     | RESULTS A<br>RIGORO<br>FRACTION<br>OUTLET                     | IBSTRACT<br>DUS<br>I T<br>A                   | I<br>I<br>EMPERI                  | B<br>)                          | (J/s)                            | (kW)                                   |                   |      |  |
| NAME                             | RATE (kg/s)                         | VAPOUR<br>INLET                     | RESULTS A<br>RIGORO<br>FRACTION<br>OUTLET                     | IBSTRACT<br>DUS<br>I T<br>A                   | I<br>EMPERI                       | B<br>)                          |                                  | (kW)                                   |                   |      |  |
| NAME                             | RATE<br>(kg/s)                      | VAPOUR<br>INLET                     | RESULTS A<br>RIGORO<br>FRACTION<br>OUTLET                     | IBSTRACT                                      | I<br>EMPERI                       | B<br>)                          | (J/s)                            | (kW)<br>-57.1                          | . !               |      |  |
| NAME<br>! Hot<br>! >>SO<br>! Hot | RATE<br>(kg/s)<br>1.3<br>0.1<br>1.2 | VAPOUR<br>INLET<br>1.0000<br>1.0000 | RESULTS A<br>RIGORO<br>FRACTION<br>OUTLET<br>1.0000<br>1.0000 | BSTRACT<br>US<br>1 T<br>A<br>299.00<br>285.11 | <br> <br>EMPERJ<br>(K<br>>><br>>> | B<br>285.11<br>285.11<br>274.17 | (J/s)<br>-57051<br>-16<br>-45617 | (kW)<br>-57.1<br>-0.0<br>-45.6         |                   |      |  |
| NAME<br>! Hot<br>! >>SO          | RATE<br>(kg/s)<br>1.3<br>0.1<br>1.2 | VAPOUR<br>INLET                     | RESULTS A<br>RIGORO<br>FRACTION<br>OUTLET<br>1.0000<br>1.0000 | BSTRACT<br>DUS<br>I T<br>A<br>299.00          | <br> <br>EMPERJ<br>(K<br>>><br><< | B<br>285.11<br>285.11<br>274.17 | (J/s)<br>-57051<br>-16           | (kW)<br>-57.1<br>-0.0<br>-45.6<br>45.6 | . !<br>) !<br>; ! |      |  |

 "Classes of criteria" shows the number of equations which have a convergence criterion belonging to the class:

10<sup>Class+i</sup> < Criterion value < 10<sup>Class</sup>

This indicates the level of convergence of ProSec.

| Name<br>Validation<br>Data<br>Misdistributions<br>Simulation<br>Historic |
|--------------------------------------------------------------------------|
| Data<br>Misdistributions<br>Simulation                                   |
| Misdistributions<br>Simulation                                           |
| Simulation                                                               |
|                                                                          |
| Historic                                                                 |
|                                                                          |
| Convergence                                                              |
| Classes of criteria                                                      |
| Flowrate repartition                                                     |
| ^                                                                        |
|                                                                          |
|                                                                          |
| CLASSES OF THE RESIDUALS                                                 |
|                                                                          |
|                                                                          |
|                                                                          |
|                                                                          |
| CLASS   NUMBER OF EQUATIONS                                              |
| BELONGING TO THE CLASS                                                   |
|                                                                          |
| -6   662<br>-5   65                                                      |
| -4 1 0                                                                   |
| -3   0                                                                   |
| -2   0                                                                   |
|                                                                          |
|                                                                          |
| 2 1 0                                                                    |
|                                                                          |
|                                                                          |

 "Historic" contains information about the errors (with help if any errors are present) and the topology analysis of the inlet data by the unit operation.

| PARAMETERS   CATALYSTS   STREAMS   FINS   REFERENCE LAYERS   INFORMATION PORTS   REPORTS   RESULTS   🔗 VALIDATION |
|-------------------------------------------------------------------------------------------------------------------|
| Name                                                                                                              |
| Validation                                                                                                        |
| Data                                                                                                              |
| Misdistributions                                                                                                  |
| Simulation                                                                                                        |
| Historic                                                                                                          |
| Convergence                                                                                                       |
| Classes of criteria                                                                                               |
| Flowrate repartition                                                                                              |
|                                                                                                                   |
|                                                                                                                   |
|                                                                                                                   |
| **** DATA TEST OF THE 2 STREAMS ****                                                                              |
| **** TEST OF THE STACKING *****                                                                                   |
| TEST OF THE STRUKING TOTAL                                                                                        |
|                                                                                                                   |
| ** ABSTRACT TABLE OF PASSAGE NUMBERS BY ZONES                                                                     |
|                                                                                                                   |
|                                                                                                                   |
| IZ IDIRI ITI                                                                                                      |
|                                                                                                                   |
| IN IAIDI IITI                                                                                                     |
|                                                                                                                   |
| STREAM   -1  0  1  2                                                                                              |
|                                                                                                                   |
| 1   0  0  3  3  6                                                                                                 |
|                                                                                                                   |
|                                                                                                                   |
| 4   0  0  3  3  6 <br>  5   0  0  3  3  6                                                                         |
|                                                                                                                   |

To consult the reports generated by ProSec unit operation:

 Double-click on its icon on the flowsheet or select "Edit..." in the contextual menu

Numerical parameter

Initialization parame

Result parameters

Document

- 2. Press the "Parameters" tab
- 3. Press the "Edit..." button
- 4. Press the "Results" tab

|                                                                              | ProSec - Unnamed.pmp3 Modified                                                                                                     |                                                                                                                |                                                                                                        |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| generated                                                                    | <u>File Edit Configuration Flowsheet To</u>                                                                                        | ols <u>S</u> imulation <u>W</u> indows <u>H</u> elp                                                            |                                                                                                        |
| ion:                                                                         | 🗋 🔄 - 🔚 🍬 💿 🕥                                                                                                                      | - 🗊 👰   🍾 🗗 🖺                                                                                                  | 🖲 💽 🐼 😵 🔊                                                                                              |
| s icon on the                                                                | 💽 노 뉴 💊 🕺 🛶 🤹                                                                                                                      | 🖌 🕞 - 🗟 - 🍓 🗎                                                                                                  | 🗟 📓 📄 🔾 🖬 T                                                                                            |
| t "Edit…" in                                                                 | Library Tree view Properties                                                                                                       | G 🖸 🔂 🔕 < 📏 🗸                                                                                                  | /iew name: Main                                                                                        |
| enu 🚽                                                                        | 🏹 Feed / Outlet                                                                                                                    | Main                                                                                                           |                                                                                                        |
| eters" tab                                                                   | ProSec (\$XTMO)                                                                                                                    | – O X                                                                                                          |                                                                                                        |
| Name: CC                                                                     | D-PROSEC                                                                                                                           |                                                                                                                |                                                                                                        |
| button Desc: Br                                                              | azed plate-fin heat-exchanger                                                                                                      |                                                                                                                |                                                                                                        |
|                                                                              | parameters. Visualize the registered details of the unit operation on your computer. Open the edition window of the unit operation | Thermodynamics Thermo. version 1.1  Output streams calculators Use the same for all streams Default calculator | CC Visual<br>Show a label                                                                              |
| CO-PROSEC - CO-ProSec                                                        | -                                                                                                                                  | m Model                                                                                                        | Move to 🕨                                                                                              |
| ers<br>eters<br>Conversion Soutput<br>tool<br>Units<br>ERS INFORMATION PORTS |                                                                                                                                    |                                                                                                                | <ul> <li>Bring to front</li> <li>Bring forward</li> <li>Send backward</li> <li>Send to back</li> </ul> |
|                                                                              |                                                                                                                                    | <u>O</u> K <u>C</u> ancel                                                                                      |                                                                                                        |

Wall temperature Along a section Along the length

File

Export...

Double-click on a type of curve to visualize

0

Synopsis

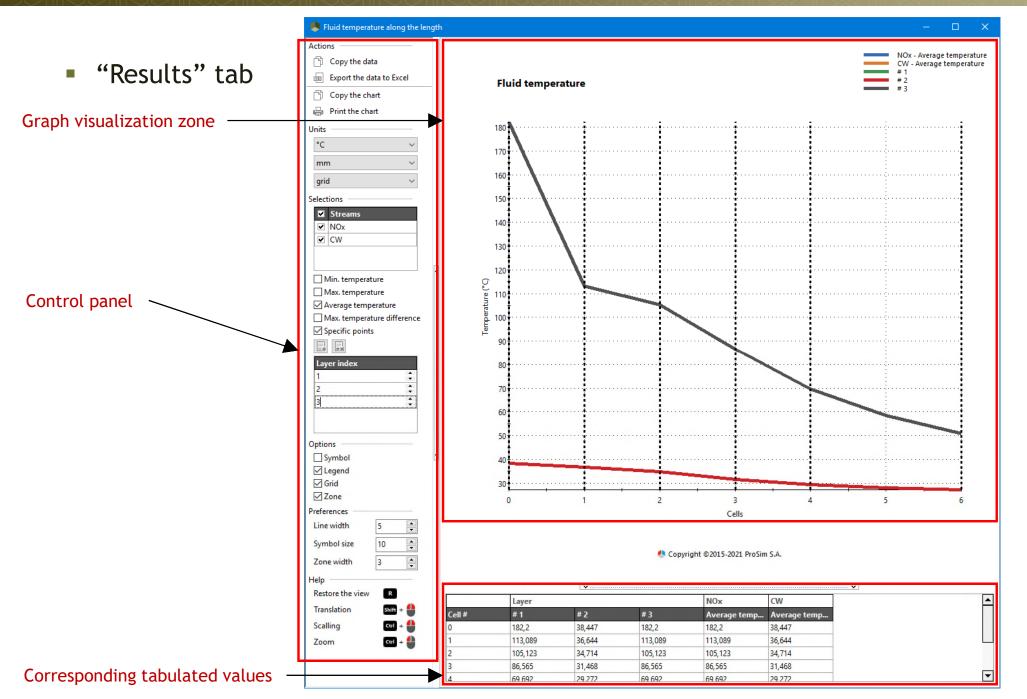
PARAMETERS CATALYSTS STREAMS FINS REFERENCE LAY

HOME

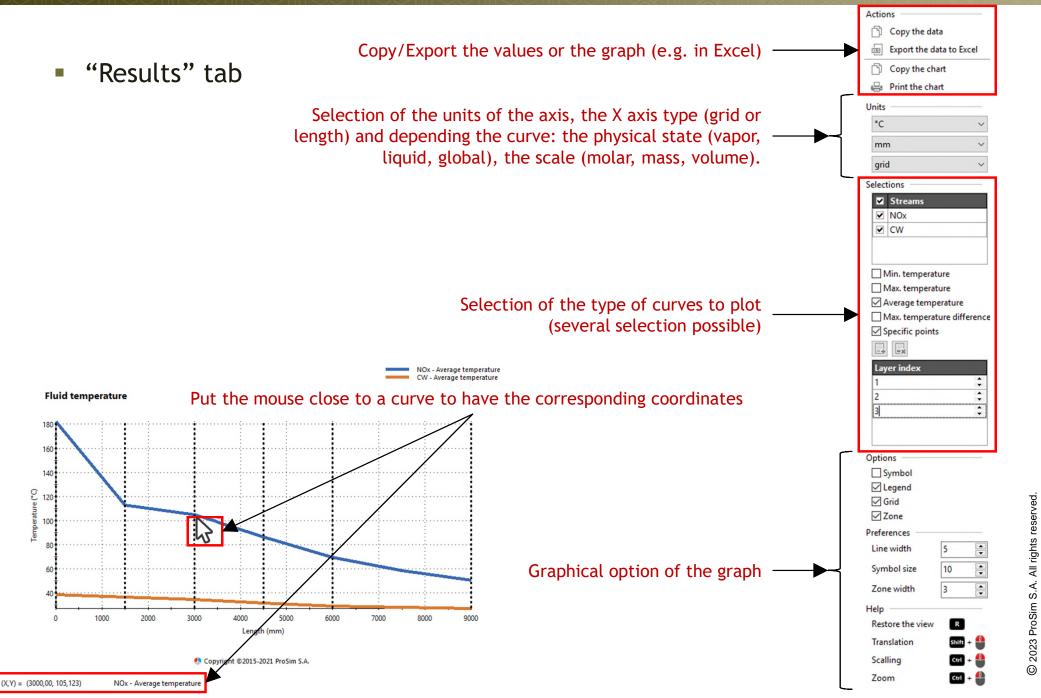
Import...

- "Results" tab
  - Graphical results

PARAMETERS | CATALYSTS | STREAMS | FINS | REFERENCE LAYERS | INFORMATION PORTS | REPORTS | RESULTS 🕑 VALIDATION


Double-click on a type of curve to visualize

| Wall temperature           |                                         |  |
|----------------------------|-----------------------------------------|--|
| Along a section            |                                         |  |
| Along the length           |                                         |  |
| Fluid temperature          |                                         |  |
| Along a section            |                                         |  |
| Along the length           |                                         |  |
| Fluid pressure             |                                         |  |
| Along a section            |                                         |  |
| Along the length           |                                         |  |
| Related to the temperature |                                         |  |
| Heat transfer coefficients |                                         |  |
| Along a section            |                                         |  |
| Along the length           |                                         |  |
| Normal efficiency          |                                         |  |
| Along a section            | Double-click on a curve to visualize it |  |
| Along the length           |                                         |  |
| Enthalpy                   |                                         |  |
| Along a section            |                                         |  |
| Along the length           |                                         |  |
| Vaporization ratio         |                                         |  |
| Along a section            |                                         |  |
| Along the length           |                                         |  |
| Holdup                     |                                         |  |
| Along a section            |                                         |  |
| Along the length           |                                         |  |
| Flowrate                   |                                         |  |
| Along a section            |                                         |  |
| Along the length           |                                         |  |


- "Results" tab
  - If at least one stream is vapor-liquid, the properties are displayed, if possible, for the vapor, the liquid and the global physical phase.
  - In green, available only for ProSec Reaction
  - In Prosec Reaction, the properties are displayed, if possible, in molar, mass and volume scale.

|         | Wall temperature           | Friction factors             |                                      |
|---------|----------------------------|------------------------------|--------------------------------------|
|         | Along a section            | Along a section              |                                      |
|         | Along the length           | Along the length             |                                      |
|         | Fluid temperature          | By-pass efficiency           |                                      |
|         | Along a section            | Along a section              |                                      |
|         | Along the length           | Along the length             |                                      |
| es      | Fluid pressure             | Reactions                    |                                      |
|         | Along a section            | Vapor rates along the length |                                      |
|         | Along the length           | Vapor extents along the leng |                                      |
|         | Related to the temperature | Exchanged heats              |                                      |
|         | Heat transfer coefficients | Along a section              |                                      |
|         | Along a section            | •                            |                                      |
|         | Along the length           | Along the length             |                                      |
|         | Normal efficiency          |                              |                                      |
|         | Along a section            |                              |                                      |
|         | Along the length           |                              |                                      |
| f       | Enthalpy                   |                              |                                      |
| · · · · | Along a section            |                              |                                      |
|         | Along the length           |                              |                                      |
|         | Vaporization ratio         |                              |                                      |
|         | Along a section            |                              |                                      |
|         | Along the length           |                              |                                      |
|         | Holdup                     |                              |                                      |
|         | Along a section            |                              |                                      |
|         | Along the length           |                              |                                      |
|         | Flowrate                   |                              |                                      |
|         | Along a section            |                              |                                      |
|         | Along the length           | _                            |                                      |
|         | Fractions                  |                              |                                      |
|         | Along the length           |                              |                                      |
|         | Velocity                   |                              |                                      |
|         | Along a section            |                              | ъ.                                   |
|         | Along the length           |                              | ۲e                                   |
|         | Density                    |                              | ese                                  |
|         | Along a section            |                              | ts                                   |
|         | Along the length           |                              | igh                                  |
|         | Dynamic viscosity          |                              | Ē                                    |
|         | Along a section            |                              | ۲.                                   |
|         | Along the length           |                              | 2023 ProSim S.A. All rights reserved |
|         | Thermal conductivity       |                              | Sin                                  |
|         | Along a section            |                              | Pro                                  |
|         | Along the length           |                              | )23                                  |
|         | Reynolds number            |                              | 0 20                                 |
|         | Along a section            | (                            | 0                                    |
|         |                            |                              |                                      |

Along the length



© 2023 ProSim S.A. All rights reserved.

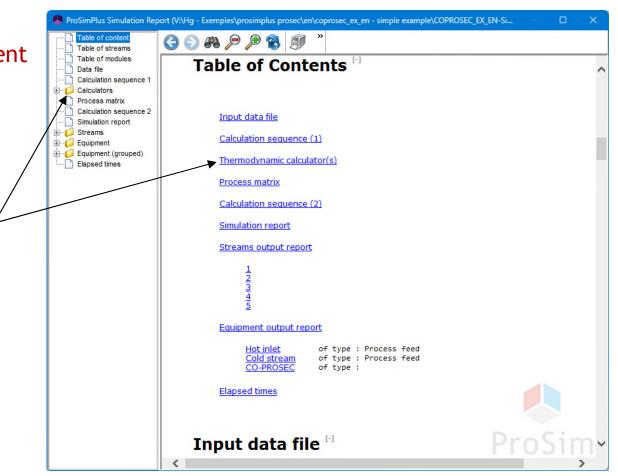


- "Results" tab
  - Display of 3D curves

simulation file) to have access to the 3D curves. All the data will be saved in the "csv" file you will HOME specify. Numerical parameters 0 < Input Plaitialization parameters Conversion 🙈 Output Synopsis Import... Export... Result parameters tool File Document Units Curves parameters Curves Curves data embedding C: \Users \rodolphe sardeing \Desktop \Nouveau dossier \3Dcurves.csv 3D curves data generation (\*) Temperatures Velocity Pressure Density Heat transfer coefficient Dynamic viscosity Normal efficiency Thermal conductivity Enthalpy Reynolds Vaporization ratio Friction factor Holdup FBy-pass efficiency For simulations with a high number of Exchanged heat ✓ Flowrate streams and/or meshes, the curves (\*) only when curves data are not embedded could be not displayed. In that case, Restore Ok Cancel just decrease the number od 3D curves.

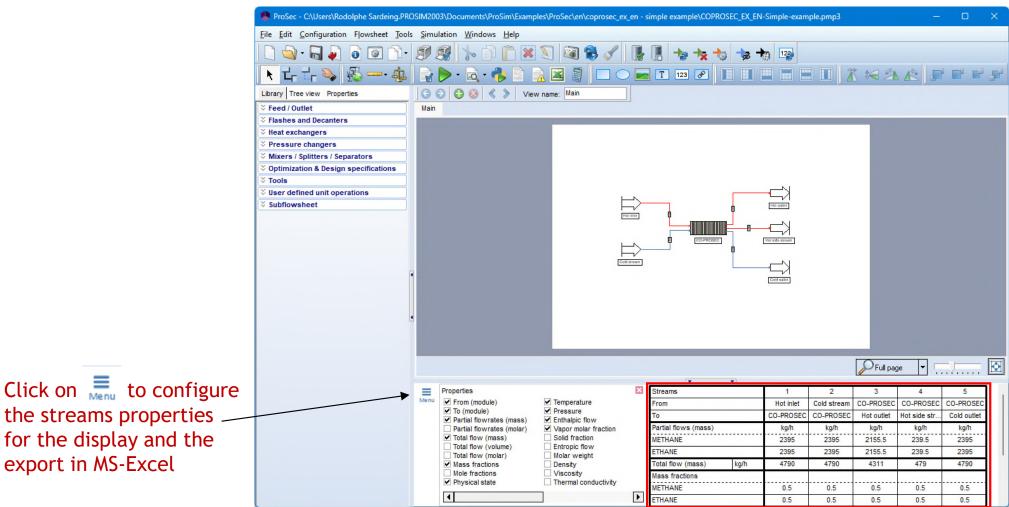
Deactivate the "Curves data embedding" (in the

# Step 5: Reports generated C- ProSimPlus general reports


The HTML report is by default automatically displayed after each run.

It provides information about:

- Pure component properties and thermodynamic models
- List of equipment calculation
- Process streams characteristics
- Results for each process equipment
- Convergence and constraints


Hyperlinks give you direct access to detailed information on initial configuration, unit operations, calculation sequence and results.

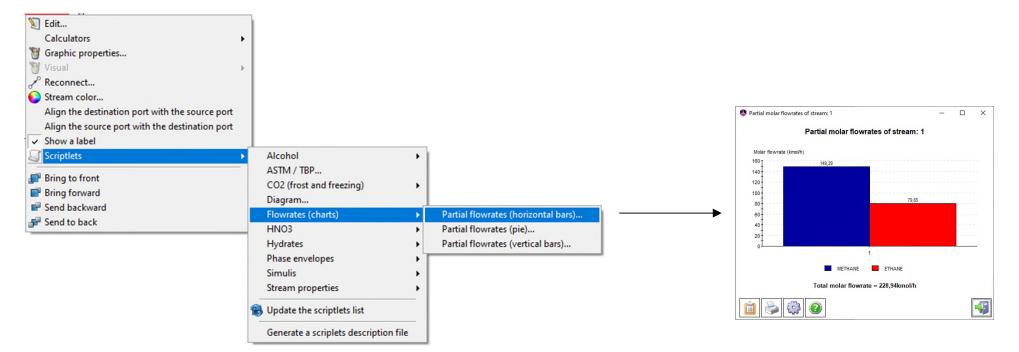
All the reports are created in the folder where you saved your project.



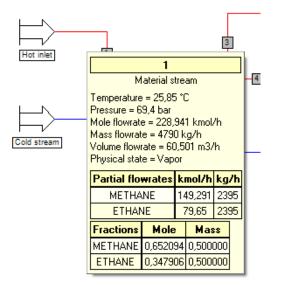
# Step 6: Analyze simulation results from the flowsheet

#### A table with selected results is automatically generated and located below the flowsheet.




You can copy the grid to paste it in other documents or directly export it to an Excel file.

77

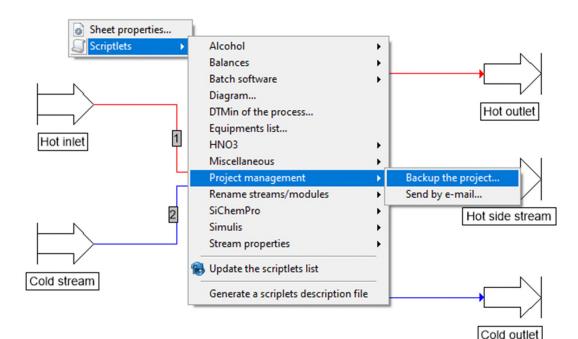

# Step 6: Analyze simulation results from the flowsheet

In the drawing area, positioning the mouse on a stream displays its characteristics

Right click on a stream to access the contextual menu. With Scritplets, you can analyze results through different types of charts.



#### These charts can be copied and pasted in other documents




# Step 7: Sharing the simulation

When you need to send the simulation to someone else, simply right click anywhere on the flowsheet, and select the Scriptlet "Send by e-mail...".

This action will automatically create a zip file that will include among other:

- ✓ The ".pmp3" file (ProSimPlus file)
- $\checkmark\,$  The History file









#### **ProSim SA**

51, rue Ampère Immeuble Stratège A F-31670 Labège France

**a**: +33 (0) 5 62 88 24 30

# www.prosim.net

info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

#### **2**: +1 215 600 3759