Getting started with ProSec[®] in ProSimPlus[®] environment

Use Case 2: Import/export parameters/results Use case study capability Define a specification

Software & Services In Process Simulation

We guide You to efficiency

© 2023 ProSim S.A. All rights reserved.

Introduction

- This document presents how to modify a parameter to meet a specification in ProSec, ProSim's CAPE-OPEN compliant unit operation dedicated to the simulation of brazed plate-fin heat exchangers.
- The objective is to determine the splitting ratio of a side stream to obtain a specified heat duty.
- In this document, ProSec is used in ProSimPlus, ProSim's steady state simulation software.
- This step by step guide starts after the "Main features overview" getting started with ProSec in ProSimPlus environment document. It's advise to start by this first getting started before doing this one.

Methodology

- To exchange information between ProSec CAPE-OPEN unit operation and the simulation environment, inlet and outlet information ports have to be defined in ProSec.
 - Inlet port: Information port by which a parameter of the CAPE-OPEN unit operation is available for the simulation environment (e.g. to modify it during the simulation).
 - Outlet port: Information port by which a result of the CAPE-OPEN unit operation can be recovered in the simulation environment (e.g. to compare it to a set point).

 In ProSimPlus simulation environment, the inlet and outlet information port have to be connected to windows script unit operations to be used during the simulation.

Methodology

- The methodology is:
 - Specify the inlet and outlet information ports in ProSec.
 - Create the windows script unit operations in ProSimPlus and connect them to ProSec.
 - Use the case study capability of ProSimPlus to check:
 - If the splitting ratio has an impact on the exchanger heat duty
 - o If the specification can be reached
 - Set up the control in the simulation using a "Constraints & recycles management" module.

Starting point

 Simulation obtained at the end of the "Main features overview" getting started with ProSec in ProSimPlus environment document.

- Open (edit) ProSec unit operation.
- Go to "Information ports" tab
 - 1. Click on "Add an inlet port" to add the inlet information port

- "Information ports" tab
 - 2. In the "Imported parameter" menu, select "Splitting ratio of flowrate (%)"

"Information ports"

- 3. In the "Stream" menu, select "Hot" (i.e. the name of the hot stream)
- 4. In the "Sidestream" menu, select "Side_Hot" (i.e. the name of the side stream of the hot stream)
- 5. Option: The name of the imported parameter can be changed

	INFORMA	TION PORTS			CO-PRO	DSEC - CO-P	ProSec				-	×
HOME	PC	ORTS										
Add an inlet port	Add an outlet port	Duplicate th selected po Edit ports	ne Deleta selecte	e the d port	INFORMATION PORTS REPOR	TS RESULTS						^
			nlet inform	ation por	s	is mesoers		Outlet	informatior	ports		
rted paramet	ter lowrate (%)	Stream Hot	Sidestream Side_Hot	Zone #	Name Splitting ratio of flowrate (%)-Hot-	<u>Side_</u>	Exported parameter	Stream	Sidestream	Name		© 2023 ProSim S.A. All rights re-

"Information ports"

6. Click on "Add an outlet port" to add the outlet information port

		INFORMAT	ION PORTS			CO-PROSEC -	C0-F	ProSec			-	×
но	ME	POF	RTS									
Add	an an	Add an	Duplicate th	e Delete t	ne							
inlet	port	outlet port	selected por	t selected p	ort							
		E	dit ports	1	1							^
PARA	METER	S CATALYSTS	STREAMS	FINS REFERENC	E LAYER	INFORMATION PORTS	REPC	ORTS RESULTS 🥑 VALID	ATION			
			Inlet in	formation po	rts			Οι	utlet inform	ation ports		
# 1	Importe	d parameter	Stream	Sidestream	Zon	Name	#	Exported parameter	Stream	Sidestream	Name	

- "Information ports" tab
 - 7. In the "Exported parameter" menu, select "Heat duty for the hot streams"
 - 8. Option: The name of the exported parameter can be changed

 Add the first windows script module (named "Data") to allow the modification of the splitting ratio in ProSec by ProSimPlus.

• The value of the splitting ratio is stored in the position #1.

🤹 w	indows Script	(\$XTMO2)				×	
Name:	Data						
Desc:							
Identif	cation Scripts	Report Streams Notes					
PAR s	size: 20			= •	Main function declarations -		
Index	Par	Info	^	▼ Param	neters of the unit operation usable in the script		
1	10	Splitting ratio (%)		1 ' -		~	
2	0		-	3 ' -	To indication that the calcula	tion of	f this
3	0		-	4 Fur 5 (OnCalculation = True - Unit operation is well done:	🖉 in tl	he
5	0		-	6 End	i Function simulation progress window		
6	0		-	· '	Sindlation progress window		
7	0	Value	of	the s	solitting ratio		
8	0		- 1				
9	0		-				
10	0		_				
11	0		_				
12	0						
13	0		~			~	
<		>	-	<		>	
					<u>O</u> K	Cancel	

Use the "Info" cells to comment the parameters

 Use an information stream to connect the "Data" windows script and the ProSec modules. By this way the splitting ratio value stored in "Data" will erase the one stored in ProSec.

 Enter the parameters in this information stream. Feel free to change the default name.

formation stream (\$ISTR2

Information sent by the windows scrip module. Select the option "Defined b position in the unit block's parameter	pt oy its r zone".	Name: Inf Desc: Identification Parameters Notes
Position of the splitting ratio in the w script module	vindows	Information type to be emitted: Defined by its position in the unit block's parameter Supply here the first and the last locations of the information stream to be emitted from "Data" Start:
Windows Script (\$XTMO2)		Information type to be received:
Name: Data Desc:	-	Defined by its position in the unit block's parameter
Identification Scripts Report Streams Hol	te	Supply here the first and the last locations of the information stream to be received in "CO-PROSEC"
PAR size: 20	_	Start: 1 End 1
1 10 Splitting ratio (%)	_	
2 0	_	<u>O</u> K <u>C</u> ancel

 Enter the parameters in this information stream. Feel free to change the default name.

nformation stream (\$ISTR2

Infor the o bloc	mation rece option "Defi k's paramet	eived by P ned by its er zone".	roSec module position in t	e. Select he unit	Name Desc: Identi	ification Parameters Notes
Posit infor	tion of the s mation port	plitting ra t list of Pro	tio in the oSec			Defined by its position in the unit block's parameter Supply here the first and the last locations of the information stream to be emitted from "Data" Start: 1
8	INFORMATION PORTS		CO-PROSEC - CO	D-ProSec		formation type to be received:
HOME	PORTS					Defined by its position in the unit block's parameter
Add an inlet port	Add an Duplicate th outlet port selected por Edit ports	e Delete the selected port				Supply here the first and the last locations of the information stream to be received in "CO-PROSEC" Start: 1 End 1
PARAMETER	S CATALYSTS STREAMS	INS REFERENCE LAYER	INFORMATION PORTS RE	EPORTS RESULTS 🖉 VALIDATI		
	Inlet in	formation ports		Outl		
# Importe	d parameter Street ratio of flowrate (%) Hot	m Sidestream Side_Hot	Zon Name splitting ratio of flc	# Exported parameter 5 2 Heat duty for hot streams		<u>O</u> K <u>C</u> ancel

 In ProSec interface, the sign in front of a parameter indicates that it can be modified through an information stream (e.g. the splitting ratio in this getting started).

	STR	EAMS TOOLS			C	O-PROSEC - CO-ProSec	
HOME		LIST				-	
Add a stream	Add a feed	Add a side stream	Duplicate	Delete	Specifications		
		St	treams edit				
PARAMET	ERS CA	TALYSTS STRE	AMS FINS R	EFERENCE I	LAYERS INFORMAT	ION PORTS REPORTS	RESULTS & VALIDATION
Hot Side	_Hot		Name			Side_Hot	
Cold			Splitting r	atio of flow	rate (%)	10	න

 Add the second windows script module (named "Results") to recover the exchanger heat duty and compare it to a set point.

		Sea Window	vs Script (\$XTMO1)		
		Name: Resu Desc:	ults		
Positi Excha ProSe	on 1: anger heat duty, value from the information stream	Identification PAR size:	20 Par	Streams Notes	 Main function declaration Parameters of the unit operation us
Positi Heat	on 2: duty set point	2 3 4	-102500 0 0	Heat duty specification (W) Heat duty deviation (W)	2 ' Use of the units conv 3 '
Positi Devia calcu duty	on 3: tion between the heat duty lated by ProSec and the heat set point	5 6 7 8 9 10	0 0 0 0 0 0		7 ' 8 ' Calculation of the de 9 ' 10 Function OnCalculation 11 ' Data recovering 12 ' 13 Q_CALC = Module.Param 14 Q_SPEC = Module.Param
?	Give names to recover the parameters easily in the "Case study".	17 12 13 14	0 0 0 0		15 16 ' Calculation of the de 17 '

 Add the second windows script module (named "Results") to recover the exchanger heat duty and compare it to a set point.

- Use an information stream to connect the ProSec and the "Results" windows script modules. By this way the exchanger heat duty will be available in the "Results" module.
- Enter the parameters in this information stream. Feel free to change the default name. Information stream (\$ISTR)

Informa option ' block's Position port list	tion sen 'Defined paramet of the h of ProSe	t by ProSe by its po er zone". heat duty ec	ec module. Select the sition in the unit	Name: Desc: Identification Parameters Notes Information type to be emitted: Defined by its position in the unit b Supply here the first and the last locatio stream to be emitted from "CO Start: 2	Nock's parameter ns of the information D-PROSEC"
INFOR	MATION PORTS		CO-PROSEC - CO-ProSec		
HOME	PORTS			Information type to be received:	
				Defined by its position in the unit b	lock's parameter
Add an Add a inlet port outlet p	n Duplicate th	e Delete the t selected port		Supply here the first and the last locatio stream to be received in "F	ns of the information Results"
	Edit ports			Start: 1 End 1	
PARAMETERS CATA	LYSTS STREAMS	FINS REFERENCE LAY	RS INFORMATION PORTS REPORTS RESULTS VALIDATIC		
	Inlet in	formation ports	Outle		
# Imported parame	eter Stream	Sidestream Zon	Name Expected parameter St		
1 Splitting ratio of	flowra Hot	Side_Hot	Splitting ratio of flowrate (* 2 heat duty for hot streams	<u>0</u>	K <u>C</u> ancel

 \times

 Enter the parameters in this information stream. Feel free to change the default name.

🧶 Information stream (\$ISTR)

	Name: Q
Information received by the windows script	Desc:
module. Select the option "Defined by its	Identification Parameters Notes
position in the unit block's parameter zone".	Information type to be emitted:
Position of the heat duty in the windows script	Defined by its position in the unit block's parameter
module	Supply here the first and the last locations of the information stream to be emitted from "CO-PROSEC"
	Start: 2 End: 2
Windows Script (SXTMOT)	Information type to be received:
Name: Results	Defined by its position in the unit block's parameter
Identification Scripts Report Streams Notes	Supply here the first and the last locations of the information stream to be received in "Results"
PAR size: 20	Start: 1 End 1
Index Par Info	
1 Heat duty - Hot streams (W)	

2

3

-102500

0

lo.

Heat duty specification (W)

Heat duty deviation (W)

OK

Cancel

Flowsheet at this step

 E.g. specify a splitting ratio of 12% in the "Data" module and run the simulation

- Use the case study ProSimPlus' capability to analyze the influence of the slitting ratio of the side stream of the hot stream (stream "4") on the heat duty of the heat exchanger.
- From the "Case study" icon.

- Selection of the studied parameter
 - Select "Data" unit operation (windows script module containing the value of the splitting ratio).
 - Select the parameter "Splitting ratio(%)".

		Unit operation:	Data W	indows Script)				~
			e sie (m					
		Parameter:	Splitting	ratio (%)				~
		Initial value:	8	0	Step:	1	Ø	
		Final value:	12	G	Number of j	points: 5	Ø	
		11						
		Unic		~				
nitori	ng							
Filter	by							
	тур	e: All types		Unit	operation: All	unit operations	<u> </u>	
D	rau	Next as Nexus	richle color	ated				
	ICV.	NO VE	mable selec	cled				
Selec	ted	Variable			Form	Compounds	Stages	^
- 00	D-PR	OSEC						
		Flowrate of stream	3		Molar			
	4	Temperature of stre	eam 3					
		Pressure of stream	13					
	븜	Vapor fraction of s	tream 3		Malar			
	븜	Flowrate of stream	14 		Molar			
	븜	Pressure of stream						
	믐	Vanor fraction of s	tream 4					_
	F	Flowrate of stream	5		Molar			
		Temperature of str	eam 5					
		Pressure of stream	15					
		Vapor fraction of s	tream 5					
		Parameter #1						
		Parameter #2						
3 Ho	ot inle	et						
		Flowrate of stream	1		Molar			
		Temperature of stre	eam 1					
		Pressure of stream	11					
_		Vapor fraction of s	tream 1					
- Co	old st	ream	-					_
		Flowrate of stream	2		Molar		_	
•								
			1. 1. 1. .	aitorad				
auct	n ala i	T OT LOOOT COOL !!!	the train and the second second					

- Specification of the range of variation of the studied variable
 - Enter the initial value of the splitting ratio (e.g. 8), its final value (e.g. 12).
 - Enter the step (e.g. 1) and click on to update the number of points (the opposite can be done).

	Ur	it operation:	Data (W	indows Script)				~
	Pa	rameter:	Splitting	ratio (%)				~
		istustus:	0		<u>c:</u>	-	0	
	ini	(iai value:	8	0	Step:	1		
	Fir	nal value:	12	Ø	Number of p	points: 5	6	
	Ur	nit:		\sim				
nitori	ing							
Filte	r by							
	Type: A	II types		Unit	t operation: All I	unit operations	~	
<< P	rev. N	No v	ariable selec	cted				
Selec	cted Var	iable			Form	Compounds	Stages	
- C(O-PROSE	0						
	E Flov	wrate of stream	m 3		Molar			
	🗌 Ten	perature of st	ream 3					
	Pre:	ssure of stream	m 3					
	🗌 Vap	or fraction of	stream 3					
	E Flov	wrate of stream	m 4		Molar			
	Ten	perature of st	ream 4					_
	Pre:	ssure of stream	m 4					
	Vac	or fraction of	stream 4				_	_
	Floy	wrate of stream	m 5		Molar			
	Ten	perature of st	ream 5					
	Pre	ssure of stream	m 5					
		or fraction of	etreem 5					
	Dar	ameter #1	Stroum 5					
	D Dar	ameter #2						
- 4	nt inlet	ameter #2						
	Flox	urate of etreau	m 1		Molar			_
		widle of Stream			molar			_
		iperature of st	ream i					
	Pre	ssure of stream	m 1					
		or fraction of	stream 1					
	old stream	1						
	E Flov	wrate of stream	m 2		Molar			-
•								
			L	- 11 1				
must	select at l	east one varia	ble to be mo	nitored.				

- Select the monitored variables
 - Select "Results" unit operation (windows script module containing the exchanger heat duty).
 - Select the parameter "Heat duty Hot streams (W)".
- Click on "Ok" to start the case study

	Unit operation:	Data (Windov	vs Script)				~
	Parameter:	Splitting ratio (20				
	1.32-1.1-1.1-1	0	7.0		-		
	milital value.	0	0	Step:	1	0	
	Final value:	12	9	Number of p	points: 5	0	
	Unit:		\sim				
onitoring							
Filter by							
Тур	e: All types	~	Unit o	peration: All	unit operations	\sim	
<< Prev.	Next >> 1 va	riable selected					
Selected	Variable			Form	Compounds	Stages	
	Pressure of stream	m 1					
	Vapor fraction of	stream 1					
Cold st	ream						
	Flowrate of stream	n 2		Molar			
	Temperature of st	ream 2					
	Pressure of stream	m 2					
	Vapor fraction of	stream 2					
Resui	15						
	Heat duty - Hot s	treams (W)					
	Heat duty specific	ation (W)					
	Heat duty deviation	n (W)					
	Parameter #4						
	Parameter #5						
	Parameter #6						_
	Parameter #7						
	Parameter #0						
	Parameter #10						
	Parameter #11						
	Parameter #12						
	Parameter #13						
	Parameter #14						
	Parameter #15						
	Parameter #16						
	Parameter #17						-

Visualization of the case study results (tables and graphs)

View: Table

Plot: Graphs (options: copy, print, graphical properties)

- Conclusions
 - The splitting ratio has an effect on the exchanger heat duty
 - An heat duty of eg. -102500 W can be reached

• The control can now be set up

Add a constraints and recycles module

ProSec - C:\Users\Rodolphe Sardeing.PRO	SIM2003
<u>File Edit Configuration Flowsheet Tool</u>	s <u>S</u> imula
🗋 🔄 - 🔚 🏹 🧿 🐼 🖒 -	I I
💽 다 다 💊 🐼 🎄	🗟 🛙
Library Tree view Properties	Ge
Feed / Outlet	Main
➢ Flashes and Decanters	
➢ Heat exchangers	
➢ Pressure changers	
➢ Mixers / Splitters / Separators	
☆ Optimization & Design specifications	
SPEC Constraints and recycles	
+- ×∠ Information stream handler	
Measurement	
PH pH meter	
Solid solubility measurement	
Optimization	
Stochastic optimization	
l	•
Vser defined unit operations	
🗧 Subflowsheet	

- Use an information stream to connect the "Results" windows script and the constraints & recycles unit operations.
- Enter the parameters in this information stream. Feel free to change the default name.
 Information stream (SISTR4)

Information sent by the windows script module. Select the option "Defined by its position in the unit block's parameter zone".	Name: Heat duty deviation Desc:
Position of the deviation in the windows script module	Information type to be emitted: Defined by its position in the unit block's parameter Supply here the first and the last locations of the information stream to be emitted from "Results"
Windows Script (\$XTMO1) Name: Results Desc:	Start: 3 End: 3 Information type to be received: Automatic
Identification Scripts Report Streams Notes PAR size: 20	Information vector to be emitted will be automaticaly determined depending on the parameters of "Constraints and recycles" Start: 0 End 0
1 Image: Description 2 102500 3 0 4 0	<u>O</u> K <u>C</u> ancel

X

 Enter the parameters in this information stream. Feel free to change the default name.

Information stream (\$ISTR4)

	Name: Heat duty deviation Desc:			
	Identification Parameters Notes			
	Information type to be emitted:			
Information received by the constraints & recycles	Defined by its position in the unit block's parameter			
module, keep the default "Automatic" selection.	Supply here the first and the last locations of the information stream to be emitted from "Results"			
	Start: 3 End: 3			
	Information type to be received:			
	Automatic			
	Information vector to be emitted will be automaticaly determined depending on the parameters of "Constraints and recycles"			
	Start: 0 End 0			
	<u>O</u> K <u>C</u> ancel			

 \times

- Use an information stream to connect the constraints & recycles and the "Data" windows script unit operations.
- Enter the parameters in this information stream. Feel free to change the default name.

nformation emitted by the constraints & recycles	Name: Splitting ratio Desc:		
	Identification Parameters Notes		
	Automatic		
	Information vector to be emitted will be automaticaly determined depending on the parameters of "Constraints and recycles" Start: 0 End: 0		
	Information type to be received:		
	Supply here the first and the last locations of the information stream to be received in "Data" Start: 1		
	<u>O</u> K <u>C</u> ancel		

 Enter the parameters in this information stream. Feel free to change the default name.

🏩 Information s

Splitting rati

Para

Name:

Desc:

Identification

Information type

In formatio

determined de

Information received by the windows script module. Select the option "Defined by its position in the unit block's parameter zone".

Position of the splitting ratio in the windows script module

Windows Script (\$XTM)	102)		Start: 0
Name: Data Desc:			Information type to be received by its position of the second sec
Identification Scripts Rep PAR size: 20	ort Streams Note		Start: 1
Index Par	Info		
1 10	Splitting ratio (%)		
2 0			

ream (\$ISTR3)	×
neters Notes	
o be emitted:	
Automatic	
vector to be emitted will be automaticaly bending on the parameters of "Constraints recycles"	and
End: 0	
o be received:	
by its position in the unit block's parameter	
e first and the last locations of the informatist stream to be received in "Data"	tion
End 1	

Flowsheet at this step

• Run the simulation

Results

ProSim SA

51, rue Ampère Immeuble Stratège A F-31670 Labège France

****:** +33 (0) 5 62 88 24 30

www.prosim.net

info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

2: +1 215 600 3759