

Cas 2 : Modélisation de bioréactions à l'aide du mode avancé

Software & Services In Process Simulation

La problématique liée à la modélisation des bioréactions résulte de la complexité et de la diversité des schémas réactionnels ainsi que des cinétiques associées. A l'aide du mode avancé de Simulis Reactions, l'utilisateur peut importer des bibliothèques de modèles cinétiques dédiés, entre autres, aux bioréactions. Ces modèles peuvent facilement être modifiés et enrichis afin de convenir à une large gamme de schémas réactionnels.

A titre d'illustration, ce document présente les étapes à suivre afin de modéliser une cinétique classique de croissance de la biomasse, basée sur la loi de Monod.

Les étapes sont les suivantes :

- Etape 1 : sélection des constituants
- Etape 2 : configuration du modèle de bioréaction

Description du modèle

Une bioréaction correspond à une réaction auto-catalysée, dans la mesure où la biomasse joue à la fois le rôle du catalyseur et du produit de la réaction :

 $Substrats + Biomasse \rightarrow Plus de Biomasse + Produits$

La stœchiométrie de la bioréaction est décrite comme suit :

$$\sum_{i=1}^{NC} \nu_i S_i \xrightarrow{X} \sum_{i=1}^{NC} \nu_i' P_i$$

Avec:

NC Nombre de constituants

S Substrats (glucose, oxygène et autres substrats limitants ou non-limitants...)
P Produits (croissance de la biomasse, produits d'intérêt et autres co-produits...)

X Biomasse (micro-organismes nécessaires à la bioréaction)

 v_i, v_i' Coefficients stæchiométriques (valeur positive pour les produits et négative pour les substrats)

La vitesse globale de la bioréaction peut être définie de la façon suivante :

$$r_G = \frac{1}{\nu_i} r_{S_i} = \frac{1}{\nu_{i'}} r_{P_i}$$

Avec:

r_G Vitesse globale de la réaction (valeur positive)

r_{Si} Vitesse spécifique de consommation du substrat S_i (valeur négative)

r_{Pi} Vitesse spécifique de formation du produit P_i (valeur positive)

Description du modèle

A l'aide du mode avancé de Simulis Reactions, l'utilisateur peut importer une bibliothèque de modèles cinétiques dédiés aux bioréactions. Deux formalismes sont proposés, permettant de combiner des modèles cinétiques élémentaires ($r(\mathcal{C}_{Si})$) afin de représenter différents mécanismes de consommation, production et inhibition :

Produit de modèles cinétiques élémentaires (Option 1):

$$r_G = \left(\alpha. \, \mu_{max} \prod_{i=1}^{NLS} r(C_{Si}) + \beta\right). \, C_X$$

Somme de modèles cinétiques élémentaires (Option 2) :

$$r_G = \left(\alpha.\sum_{i=1}^{NLS} \mu_{max,i}. \boldsymbol{r}(\boldsymbol{C_{Si}}) + \beta\right). C_X$$

Avec:

lpha Coefficient lié à la croissance de la biomasse eta Coefficient non-lié à la croissance de la biomasse

 μ_{max} Taux de croissance maximum

 C_{Si} , C_X Concentration du substrat, de l'inhibiteur ou de la biomasse

Les modèles cinétiques élémentaires $r(C_{Si})$ sont sélectionnés parmi une liste standard pouvant être enrichie par l'utilisateur

Indice du modèle	Description	Equation du terme $r(\mathcal{C}_{Si})$
1	Monod	$\frac{C_S}{K_S + C_S}$
2	Hill	$\frac{C_S^N}{K_S^N + C_S^N}$
3	Contois	$\frac{C_S}{K_S C_X + C_S}$
Etc		

Description du modèle

EXEMPLE D'APPLICATION: l'exemple simple suivant est basé sur une modélisation de la croissance de la biomasse, correspondant à l'équation de réaction :

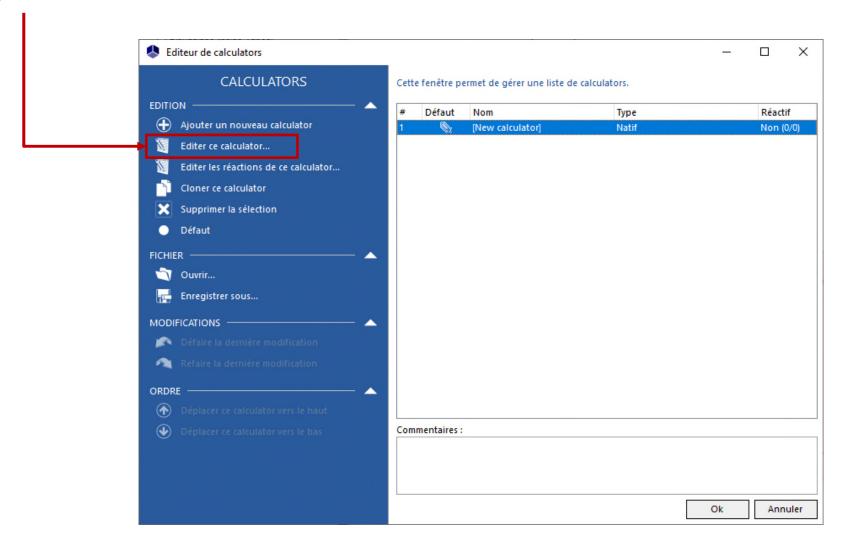
 $Substrat + Biomasse \rightarrow Plus de Biomasse$

La stoeichiométrie de la bioréaction est décrite comme suit : $S \xrightarrow{X} X$

La vitesse globale de la bioréaction est représentée par la loi de Monod :

$$r_G = \mu. C_X = \mu_{max} \left(\frac{C_S}{K_S + C_S} \right) C_X$$

Avec:


Paramètres du modèle	Définition	Valeur	
μ_{max}	Taux de croissance maximum	4,10 ⁻⁵ s ⁻¹	
K_S	Constante de saturation	2,8 g/L	
C_S, C_X	Concentration du substrat (S) et de la biomasse (X)	Variables procédé	

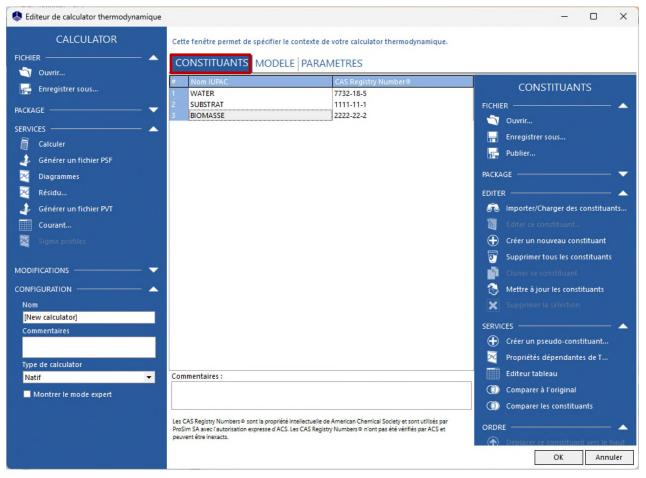
© 2023 ProSim S.A. All rights reserved

Etape 1 : sélection des constituants

Depuis « l'éditeur de calculators », sélectionnez « Editer ce calculator »

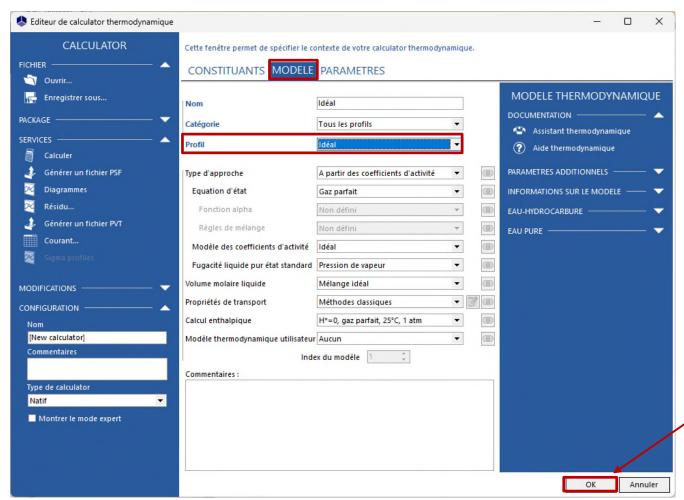
© 2023 ProSim S.A. All rights reserved.

Etape 1 : sélection des constituants


Cet exemple d'application nécessite d'importer les constituants suivants, avec les modifications décrites ci-après :

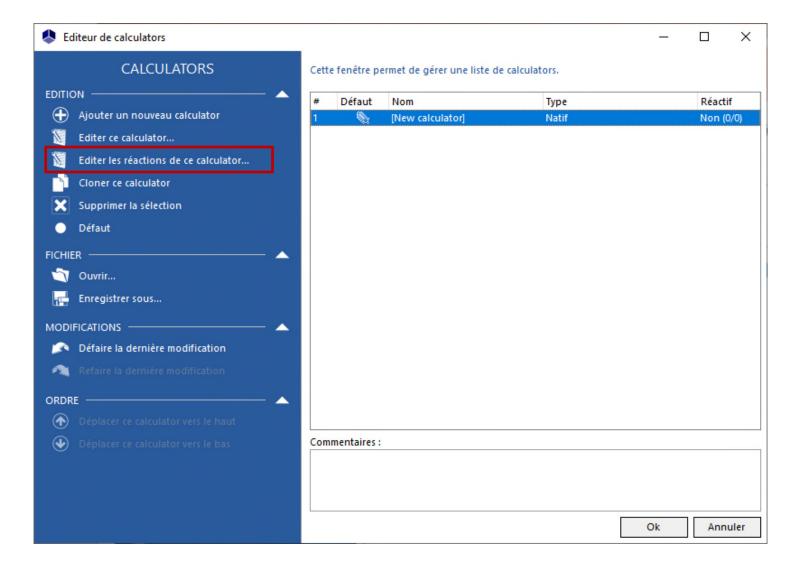
- WATER
- SUBSTRAT (modélisé comme le « Glucose ») :
 - Importation du « Glucose » depuis la base de données standard
 - Modification du nom : SUBSTRAT
 - Modification du numéro CAS(*): 1111-11-1
- BIOMASSE (modélisée comme le « Glucose ») :
 - Importation du « Glucose » depuis la base de données standard
 - Modification du nom : BIOMASSE
 - Modification du numéro CAS^(*): 2222-22-2

5


Etape 1 : sélection des constituants

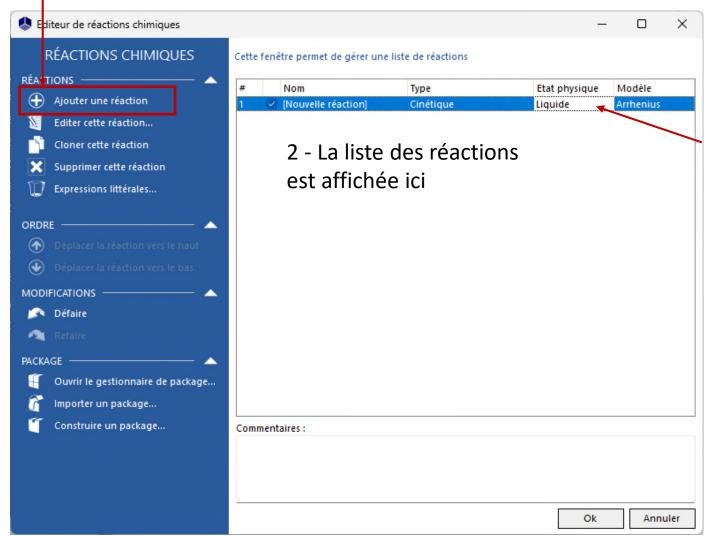
Une fois cette étape terminée, les constituants sont affichés de la façon suivante dans l'onglet « *Constituants* » :

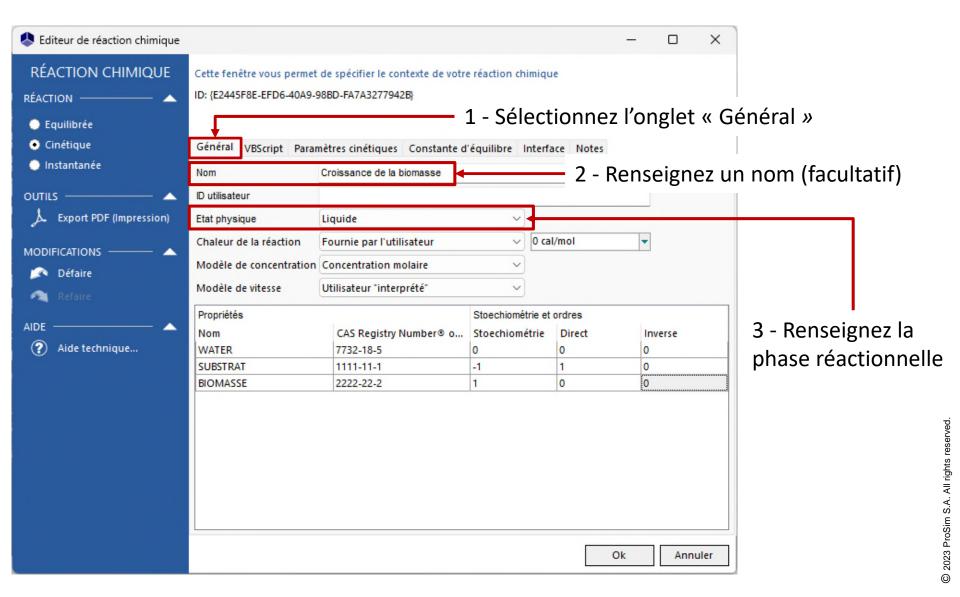
1 - Dans l'onglet « *Modèle* », sélectionnez le profil thermodynamique « *Idéal* » :


2 - Cliquez sur « *Ok* » pour confirmer

2023 ProSim S.A. All rights reserved

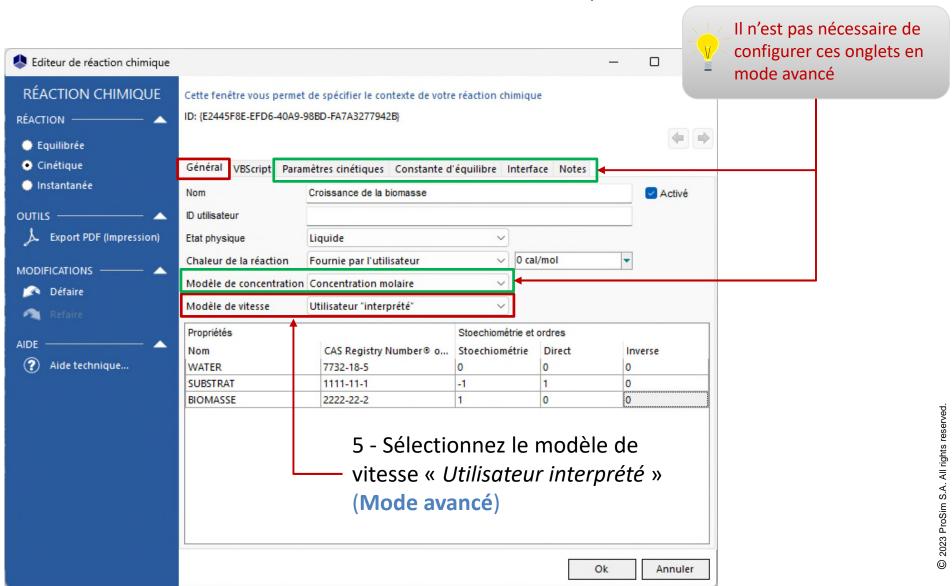
Etape 2 : configuration du modèle de bioréaction


De retour à « l'éditeur de calculators », sélectionnez « Editer les réactions de ce calculator » :

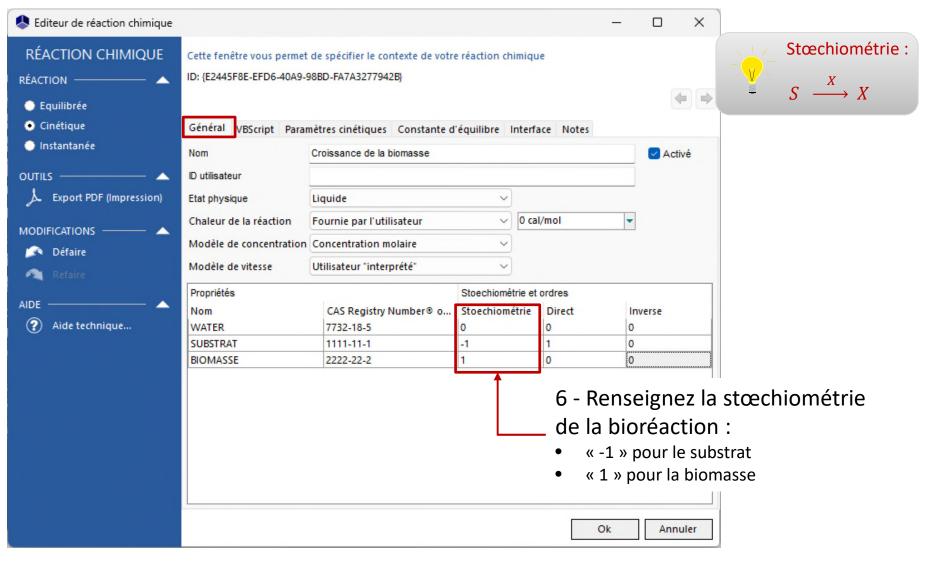

11

Etape 2 : configuration du modèle de bioréaction

1 - Sélectionnez « *Ajouter une réaction* »


3 - Double cliquez sur la nouvelle réaction afin de la configurer

Constant S A All rights research


Etape 2 : configuration du modèle de bioréaction

Editeur de réaction chimique					- 🗆 X
RÉACTION CHIMIQUE	Cette fenêtre vous permet de spécifier le contexte de votre réaction chimique ID: {E2445F8E-EFD6-40A9-98BD-FA7A3277942B}				
 Equilibrée 					+ +
 Cinétique 	Général VBScript Paran	nètres cinétiques Constante	d'équilibre Interfa	ace Notes	
Instantanée	Nom	Croissance de la biomasse			Activé
OUTILS —	ID utilisateur				
لم Export PDF (Impression)	Etat physique	Liquide	V		
MODIFICATIONS —	Chaleur de la réaction	Fournie par l'utilisateur	√ 0 ca	l/mol	▼
Défaire	Modèle de concentration	Concentration molaire	~		
Refaire	Modèle de vitesse	Utilisateur "interprété"	~		
	Propriétés		Stoechiométrie et	ordres	
AIDE	Nom	CAS Registry Number® o.	Stoechiométrie	Direct	Inverse
? Aide technique	WATER	7732-18-5	0	0	0
	SUBSTRAT	1111-11-1	-1	1	0
	BIOMASSE	2222-22-2	1	0	0
4 - Indiquez une « de réaction » de 0					
				Ok	Annuler

© 2023 ProSim S.A. All rights reserved.

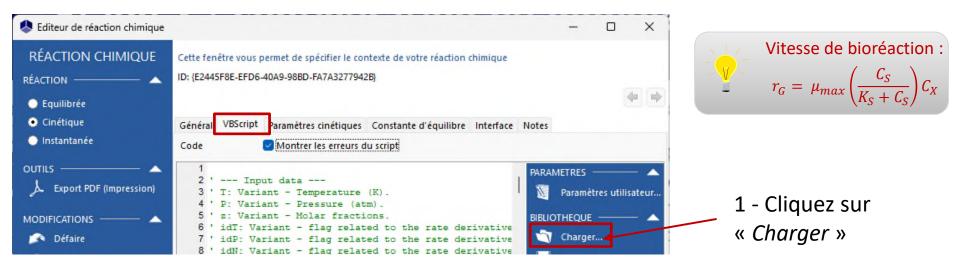
Etape 2 : configuration du modèle de bioréaction

Accédez au Mode avancé afin de fournir un modèle cinétique utilisateur

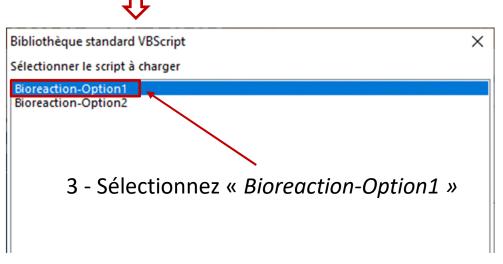
Il est nécessaire de consulter « *l'aide technique* » afin d'obtenir les informations sur les modèles cinétiques adaptés à une bioréaction ainsi qu'aux paramètres à fournir

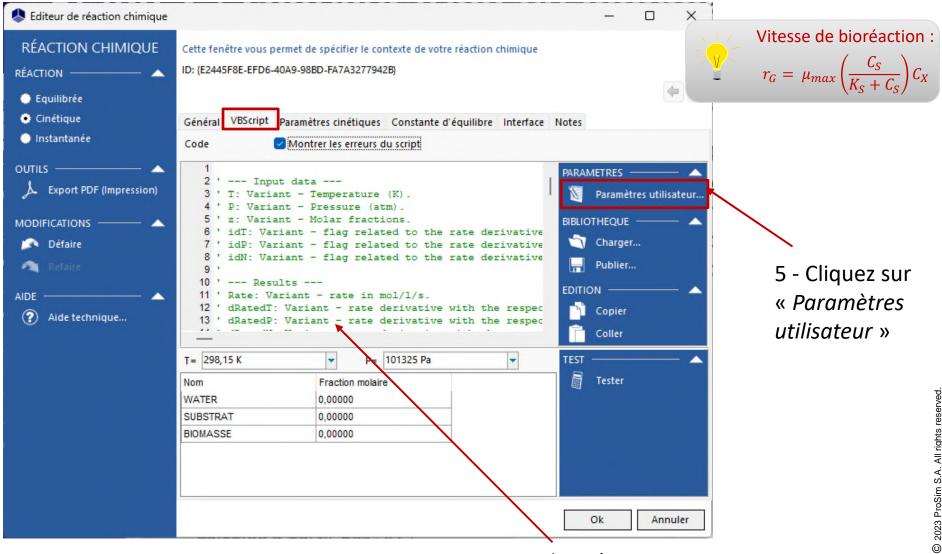
Sélection du modèle adapté

Vitesse de bioréaction :
$$r_G = \mu_{max} \left(\frac{C_S}{K_S + C_S} \right) C_X$$


Sélection du modèle pour la vitesse globale de la bioréaction

$$(Option 1): r_G = \left(\alpha. \mu_{max} \prod_{i=1}^{NLS} r(C_{Si}) + \beta\right). C_X$$


Sélection des modèles cinétiques élémentaires $r(\mathcal{C}_{Si})$


Indice du modèle	Description	Equation du terme $r(\mathcal{C}_{\mathit{Si}})$
1	Monod	$\frac{C_S}{K_S + C_S}$

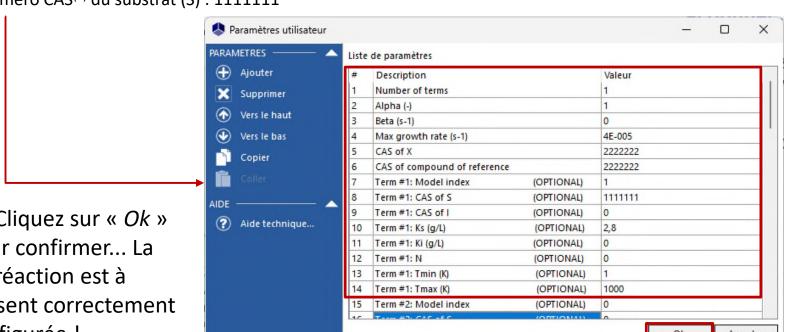
Accédez au Mode avancé afin de fournir un modèle cinétique utilisateur

2 - La liste des scripts disponibles est affichée ici ——

4 - Le script est chargé ici

Vitesse de bioréaction :

 $r_G = \mu_{max} \left(\frac{C_S}{K_S + C_S} \right) C_X$


© 2023 ProSim S.A. All rights reserved.

Etape 2 : configuration du modèle de bioréaction

Accédez au Mode avancé afin de fournir un modèle cinétique utilisateur

1 - Indiquez les paramètres d'entrée du modèle :

- 1 terme cinétique élémentaire, correspondant au modèle (« Model index ») n°1 (Monod)
- α = 1
- $\beta = 0$
- μ_{max} = 4,10⁻⁵ s⁻¹
- $K_{\rm S} = 2.8 \, {\rm g/L}$
- Numéro CAS^(*) de la biomasse (X) et du constituant de référence : 2222222
- Numéro CAS^(*) du substrat (S): 1111111

2 - Cliquez sur « Ok » pour confirmer... La bioréaction est à présent correctement configurée! Annuler

ProSim SA
51, rue Ampère
325 Ches

Immeuble Stratège A F-31670 Labège France

2: +33 (0) 5 62 88 24 30

www.prosim.net
info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

2: +1 215 600 3759