Getting started with Simulis[®] Thermodynamics

Use Case 9: Create a compound that is not available in databases

Software & Services In Process Simulation

We guide You to efficiency

© 2023 ProSim S.A. All rights reserved.

This document presents the different steps to follow to create a new compound that is not present in databases and to determine its properties.

The steps are the following:

- Step 1: Add a new compound
- Step 2: Enter the SMILES of the compound
- Step 3: Determine constant properties
- Step 4: Decomposition into functional sub-groups
- Step 5: Temperature dependent properties

Step 1: Add a new compound

ACCESS THE THERMODYNAMIC CALCULATOR EDITOR:

If you are using Simulis Thermodynamics in Excel:					
Create the coloridator chiest in a correctleheat	Insert - Duplicate - Move - Rename - Delete - Edit -				
reate the calculator object in a spreadsheet		Simulis System			
	4	Simulis Compound	s rsonnalisées		
	2	Simulis Compounds			
	\$	Simulis Calculator			
		Simulis Calculators	E	F	G

 If you are using Simulis Thermodynamics within another ProSim environment (ProSimPlus, BatchReactor, BatchColumn etc...):

Click on the thermodynamic icon to open the calculator editor:

Simulis Thermodynamics is a « software component » that you can integrate into different applications: ProSim software, Excel, Matlab, your own software, etc...

Step 1: Add a new compound

Create a new compound and edit this compound (Double-click or rightclick on the [New compound] added)

Step 1: Add a new compound

Step 2: Enter the SMILES of the compound

SMILES: Simplified Molecular Input Line Entry Specification

Weininger, J. Chem. Inf. Comput. Sci., 28 (1988)

Specification in form of a line notation for describing the structure of chemical species using short ASCII strings

https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system

Compound Editor	– 🗆 X	
FILE A Image: Compound Image: Compound Image: Compound Image: Compound	Name: [New compound] ID: (08F5600E-F83C-4898-8083-7996E3213064) Original ID: Original location: \\ Image: Complete Complete Properties Value Identification IUPAC name Specific name IUPAC name Specific name Chemical formulae Chemical formulae Chemical formulae Chemical formulae Clopecties Chemical formulae Chemical formulae Compound comments Cosmo file Cosmo file	Example: OH CH ₃ C1(O)cc(C)ccc1

Constant properties have been estimated by predictive methods from the SMILES of the molecule

© 2023 ProSim S.A. All rights reserved.

Step 4: Decomposition into functional sub-groups

The use of a predictive thermodynamic model based on group contribution (UNIFACs, PPR78...) requires the knowledge of molecule decompositions in functional sub-groups

The automatic decomposition can fail if the molecule cannot be decomposed in the sub-groups available in the chosen group contribution model

For temperature dependent properties, choose a correlation if it is known...

If experimental data is available:

2023 ProSim S.A. All rights reserved.

If no experimental data is available:

[New compound]	- 🗆 ×	
IDENTIFICATION	Use this parameters identification tool to obtain the coefficients intervening in the mathematical equation that represents the evolution of the property according to temperature.	
Vapor pressure Correlation to use : Equation # 99 • DATA Paste data from clipboard Insert a new line Delete the current line Prediction DENTIFICATION Calculate now Copy table to clipboard Copy table to clipboard Show/Hide graph window OPTIONS Numerical parameters	Default units : Formula (click for a larger view) : Image: Temperature bar percentage % Image: Temperature bar pressure (click) Experimental and calculated points : Image: Temperature Vapor pressure (calck) Absolute error relative er	Click on the "Prediction…" button (only available if the SMILES has been provided)
	Identification results : A Criterion B Mean relative error C Max. relative error Mean absolute error Max. absolute error Max. absolute error Max. absolute error Max. absolute error Max. absolute error Set as initialization coefficients Correlation expressed in mmHg	

Generation of pseudo-experimental data estimated by predictive methods from the SMILES

					Access the help file description of all es methods	: timation
Temperature depen	dent properties p	rediction			×	
Use a prediction system	to calculate the t	emperature depe	ndent propertie	s of a compound.		
Predictive model	Riedel, 1954		~ 2			
Specify the temperature	e interval					
Property	Unit	Initial	Final	Step	Points	
Temperature	K	300	700	10	41 🗘	
		Î		Ok	Cancel	
Give	the temper	ature range	e for the se	elected prop	perty	
	(e.	g., for vap	or pressur	e,	-	
from the n	ormal melti	ng tempera	ature to the	e critical ten	nperature)	
and the st	ep of calcul	ation to ge	nerate the	expected r	number of	
		poir	nts	•		

Renew the operation for the other temperature dependent properties (with a correlation, by regression from experimental data or estimated with the knowledge of the SMILES)

For the selected property, click on "Regression". Generation of pseudoexperimental data from the SMILES is available for the following properties:

- Vapor pressure
- Ideal gas specific heat
- Liquid density
- Liquid viscosity
- Surface tension

Conclusion

The properties of a compound that is not available in databases:

- Constant
- Decomposition in functional sub-groups
- Temperature dependent

can be given by the user or estimated with predictive methods from the knowledge of the SMILES of the molecule.

The required properties to create a compound depend on the type of thermodynamic calculation (equilibrium, transport properties...) and the choice of the thermodynamic model to represent the studied system (cf. help on thermodynamic models to know required pure component properties according to the chosen model)

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

www.prosim.net

info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

2: +1 215 600 3759