Getting started with Simulis[®] Thermodynamics

Use Case 11: Management of electrolytic systems with the reactive models editor

Software & Services In Process Simulation

We guide You to efficiency

© 2023 ProSim S.A. All rights reserved.

This document presents the management of electrolytic thermodynamic models and the configuration tool of these reactive models

- Some definitions
- Use within Simulis Thermodynamics and visualization of parameters
- Presentation of the reactive models editor

Some definitions

Electrolyte:

 molecular or atomic species (gaseous, liquid or solid) which has some solubility in a solvent and react with it to form one or more ionic species (charged)

E. g.: CO₂ (g), NaCl (s)

- Electrolyte equilibrium:
 - Thermodynamic equilibrium involving species that are all in the solvent phase

E. g.: CO_2 (aq) + H_2O (aq) <==> H^+ (aq) + HCO_3^- (aq)

Some definitions

Apparent species:

o molecule or atomic species defined by the user

E. g.: H_2O , CO_2 , NaCl

- True species:
 - all species existing in the mixture, additional species with respect to the apparent species being created through electrolyte reactions (including apparent species)

E. g.: H₂O, CO₂, NaCl, HCl, NaOH, NaHCO₃, Na₂CO₃, Na₂CO₃, H₂O, Na₂CO₃, 7H₂O, Na₂CO₃, 10H₂O, H⁺, OH⁻, CO₃²⁻, HCO₃⁻, Na⁺, Cl⁻

Some definitions

Global presentation of multiphase electrolyte systems

- Electrolyte solutions: strongly non ideal solutions (particles with electrically charged, electrostatic interactions)
- Use of specific thermodynamics to describe aqueous phase
- Liquid-solid, vapor-liquid, vapor-liquid-solid Equilibria

Step 1: in the calculator, define apparent species of the system

 Step 2: choose an electrolyte thermodynamic model (in the category "Heterogeneous approach - Electrolytes")

- Simulis Thermodynamics (thermodynamic server of ProSim) offers several electrolyte or reactive thermodynamic models (cf. category of the models)
 - o Sour Water
 - o Pitzer
 - o Amines and acid gases
 - o e-NRTL
 - UNIQUAC electrolytes
 - o ULPDHS
 - o MSE
 - COSMO-UCAs
 - 0 ...

 Step 2: case of a group contribution predictive electrolyte thermodynamic model, e. g. ULPDHS (in the category "Heterogeneous approach - Electrolytes - predictive models")

T Open	COMPOUND: MODEL P	ARAMETERS		
Save as	Name	ULPDHS		THERMODYNAMIC MODEL
ACKAGE	Category	All the profiles	•	DOCUMENTATION A
RVICES	Profile	ULPDHS	-	Thermodynamic help
Export as a PSF file	Approach type	From activity coefficients	• @	ADDITIONAL PARAMETERS
Diagrams	Equation of state	Nakamura	• 0	
Residue	Alpha function	Not defined	*	① Reactive mode arameters
Export as a PVT file	Mixing rules	Not defined	*	Predictive model parameters
Stream	Activity coefficient model	ULPDHS	-	OP Polymers model parameters
Sigma profiles	Pure liquid fugacity standard state	Henry's law with Poynting correction	n 🔻 🔘	WATER-HYDROCARBON
ODIFICATIONS	_ 🧹 Liquid molar volume	Helgeson	-	PURE WATER
DNFIGURATION	- Transport properties	Electrolytes	- 7 0	
Name	Enthalpy calculation	H*=DH0f, ideal gas, 25°C, 1 atm	•	
	User-defined thermodynamic model	None	•	
Comments		Model index 1		
Calculator type	Comments :			
Native				
Show the expert mode				

Click on the button "Predictive model parameters..."

Refer to "Getting started with Simulis Thermodynamics, Case 10" for more details concerning the use of group-contribution predictive models

 Step 3: visualization of parameters of the chosen model for the selected system

CALCULATOR				
CALCOLATON	This window helps you to define the	e context of your thermodynamic calc	ulator	
.E	COMPOUNDS MODEL	PARAMETERS		
Save as	Name	Sour water		THERMODYNAMIC MODEL
CKAGE	Category	All the profiles	•	DOCUMENTATION
VICES	Profile	Sour water	-	⑦ Thermodynamic help
Export as a PSF file	Approach type	From activity coefficients	-	ADDITIONAL PARAMETER
Diagrams	Equation of state	Nakamura	-	
Residue	Alpha function	Not defined	Ŧ	Reactive model parameters
Export as a PVT file	Mixing rules	Not defined	-	Predictive model parameters
Stream	Activity coefficient model	Edwards	-	Polymers model parameters
Sigma profiles	Pure liquid fugacity standard stat	Henry's law with Poynting correction	on 🔻	WATER-HYDROCARBON
DIFICATIONS	Liquid molar volume	Helgeson	•	💿 PURE WATER 🔻
IFIGURATION	Transport properties	Electrolytes	- B	
ame	Enthalpy calculation	H*=DH0f, ideal gas, 25°C, 1 atm	-	
	User-defined thermodynamic mode	None	-	
omments		Model index 1		
A	Comments :			_
alculator type Jative				
Show the expert mode				

Click on the button "Reactive model parameters..." (enabled only if the model is an electrolyte model)

 Step 3a: list of true species that can exist in the system (apparent species + ionic species + salts + other species that can be recombined)

Step 3b: list of electrolyte reactions taken into account in the chosen reactive model for the selected system

Step 3b: parameters of the selected electrolyte reaction (stoichiometry, speciation, possible precipitation)

 Step 3c: interaction parameters of the chosen model between true species (binaries, possibly ternaries)

 Parameters of the chosen model for the selected system, accessible from the "Reactive model parameters..." button, are "Read Only" (no possible modification)

- Visualization of species, equilibrium reactions and interactions taken into account by the model
- Possibility to add systems or to modify parameters of existing systems

Reactive models editor: "ReactiveModelsEditor.exe"

Accessible from "Start" menu of WINDOWS
Or in directory: C:\Program Files (x86)\Simulis
Or in directory: C:\Program Files\Simulis

Reactive models editor: "ReactiveModelsEditor.exe"
 Open a database associated to a model

- Data file of reactive model parameters (rmf)
 - In C:\ProgramData\Prosim\Stardust\Electrolytes models
 - o 1 rmf file for each electrolyte model

It is strongly recommended to save original rmf files as well as the different versions created by the user

📙 🛛 🛃 🚽 🗍 Electrolytes models				Π×
Fichier Accueil Partage Affi	chage			~ 🕐
← → → ↑ C:\ProgramData\	→ ✓ ↑ C:\ProgramData\ProSim\StarDust\Electrolytes models		Rechercher dans : Electrolytes 🔎	
	Nom	Modifié le	Туре	Taille
🖈 Acces rapide	Backup	20/06/2018 16:37	Dossier de fichiers	
🝊 OneDrive	AMINE_GA.rmf	08/12/2017 10:14	Fichier RMF	90 853 Ko
	COSMO-UCAs.rmf	12/12/2017 15:46	Fichier RMF	2 Ko
- cerc	ENRTL.rmf	30/01/2018 18:24	Fichier RMF	14 784 Ko
🔿 Réseau	MSE.rmf	09/02/2018 11:54	Fichier RMF	15 270 Ko
	PITZER.rmf	30/01/2018 18:45	Fichier RMF	14 382 Ko
	SOUR_WATER.rmf	29/03/2018 19:19	Fichier RMF	15 470 Ko
	ULPDHS.rmf	30/01/2018 18:40	Fichier RMF	13 304 Ko
	UQMS.rmf	30/03/2018 15:16	Fichier RMF	16 473 Ko
	UQSW.rmf	30/01/2018 18:38	Fichier RMF	19 800 Ko
10 élément(s)				

Add a species

🐥 Reactive models editor : Sour Water			– 🗆 X
HOME			
Open Save Undo Redo Languag	ge Help About Predictive model		
Edit Modifications Option	s Help Actions		~
COMPOUNDS REACTIONS BINARIES TERNAL	RIES		
		Barrister Car Nambar	
COMPOUNDS	F TOPAC Name	Registry Cas Number	-
FILE	324 SODIUM NITRATE	7631-99-4	
-		6834 92 0	
Open	327 SODIUM SHEATE	7757.82.6	
🛁 Save As	328 SODIUM THIOSULEATE	7772.98.7	
Publish	329 SOLIALANE	111-01-3	
1 Constant	330 SULFUR DIOXIDE	7446-09-5	
PACKAGE	331 SULFURIC ACID	7664-93-9	
	332 TETRASODIUM PYROPHOSPHATE	7722-88-5	
EDIT 🔺	333 trans-2,2,4,6,6-PENTAMETHYL-3-HEPTENE	27656-49-1	
Import compounds	334 trans-2-BUTENE	624-64-6	
	335 trans-2-DECENE	20063-97-2	
No. Edit this compound	336 trans-2-DODECENE	7206-13-5	
Add a new compound	337 trans-2-EICOSENE	42448-85-1	
The Remove all the compounds	338 trans-2-HEPTENE	14686-13-6	
Keniove an the compounds	339 trans-2-HEXENE	4050-45-7	
Clone this compound	40 trans-2-NONENE	6434-78-2	
Y Delete the selection	31 trans-2-OCTENE	13389-42-9	
	34 trans-2-PENTADECENE	74392-36-2	
SERVICES A	343 trans-2-PENTENE	646-04-8	
Crasta a pravido compound	344 rans-3-HEPTENE	14686-14-7	
Create a pseudo-compound	345 trans-3-HEXENE	13269-52-8	
Temperature dependent properties.	346 trans-3-OCTENE	14919-01-8	
Editor array	347 trans 4-OCTENE 348 TRISODIUM PHOSPHATE	14850-23-8 7601-54-9	
(Compare with the original	349 VINYLACETYLENE	689-97-4	
	350 WATER 💊	7732-18-5	
Compare the compounds	351 [New compound]		
ORDER 🔺			
Move this compound up	Comments		
Move this compound down			

- Add a ionic species: required properties
 - o Name
 - CAS number or intrinsic number (negative value not used yet < -1000)
 - o Molecular weight
 - o Charge
 - o Born constant
 - Thermal conductivity contribution (electrolyte solution) (only if the Jamieson-Thudope model is used)
 - Helgeson coefficients: A₁, A₂, A₃, A₄, C₁, C₂
 (only if the Helgeson model is used)
 - o Standard entropy at 25°C infinite dilution
 - o Standard specific heat at 25°C infinite dilution
 - Standard state enthalpy of formation infinite dilution
 - Standard state Gibbs energy of formation infinite dilution
 - Temperature dependent properties: those of water

Add a salt: required properties

- o Name
- CAS number or intrinsic number (negative value not used yet < -1000)
- o Chemical formula
- o Molecular weight
- Physical state at 25°C: solid
- Physical state in aqueous solution at 25°C (must be different from "completely soluble")
- $\circ\,$ Solid standard state enthalpy of formation
- Solid specific heat (temperature dependent)
- Vapor pressure: non volatile (equation #101 with A=-30)
- Enthalpy of vaporization: null (equation #100 with A=B=C=D=E=0)
- o Other temperature dependent properties: those of water

Add another component: required properties

- o Name
- o CAS number
- o Chemical formula
- o Molecular weight
- Physical state at 25°C
- $_{\odot}$ Standard state enthalpy of formation at 25°C
- $_{\odot}$ Standard state Gibbs energy of formation at 25°C
- $_{\odot}\,$ Standard state absolute entropy at 25°C
- Nakamura coefficients (A, B, C, D, A0, A1, B0, B1) (only if Nakamura equation of state is used)
- All temperature dependent properties
- Particularly Henry's law constant for solutes

Properties of the species

As part of the use of a reactive model, all properties of a component coming from the reactive models editor have priority compared to properties of a component selected in the calculator

• Except for the following properties:

- Physical state at 25°C
- Physical state in aqueous solution at 25°C

(it allows to impose or not, directly in the components of the calculator, a possible precipitation for systems with many salts)

Add an electrolyte reaction

Add an electrolyte reaction

Add an electrolyte reaction (speciation constant)

Add an electrolyte reaction (precipitation constant, if necessary)

Add binary or ternary interaction parameters

Reactive Models Editor vs Calculator

 Add in the calculator all species that are able to precipitate or to be recombined

Visualization of parameters: Save all true species of the system as a *.compounds file

Reactive models editor (ReadOnly)			- 🗆 X
About Helo COMPOUNDS REACTIONS BINARIES TERMA	RIES		~
COMPOUNDS FILE FILE FILE FILE FILE FILE FILE FILE	UPRC Name VALUE CABON DIOXIDE SODUM CHLORIDE SODUM CHLORIDE SODUM CHLORIDE SODUM CABONATE NAZC03, TH2O NAZC03, TH2O NAZC03, TH2O NAZC03, TH2O NAZC03, TH2O NAZC03, TH2O NAZC1, TH2O NAZC2, TH2O NAZC3, TH2O NAZ1, TH2O NAZ1, TH2O NAZ1, TH2O NAZ1, TH2O NAZ1, TH2O NAZ21, TH2O NAZ21, TH2O NAZ221, TH2O SC021, TH2O SC021, TH2O SC021, TH2O SC021, TH2O SC021, TH2O SC021, TH2O <td< th=""><th>Registry Cas Humber 7732-18-5 124-38-9 7647-14-5 7647-01-0 1310-73-2 144-55-8 497-19-8 6132-02-1 5968-11-6</th><th></th></td<>	Registry Cas Humber 7732-18-5 124-38-9 7647-14-5 7647-01-0 1310-73-2 144-55-8 497-19-8 6132-02-1 5968-11-6	
ORDER Move this compound up	Comments		
			Ok Cancel

Calculator: Open the *.compounds file and choose non ionic species

Reactive Models Editor vs Calculator

Add species of the reactive models editor to the calculator

Reactive models editor: Right click on a species, **Copy** (or CTRL + C)

Calculator: Right click in the component list, **Paste** (or CTRL + V)

Reactive Models Editor vs Calculator

Working directly with true species

Calculator - Compounds: Open the *.compounds file and choose ionic species in addition to apparent species defined by the user

Calculator - Model: Select the "true species model" option (no reaction taken into account)

ProSimPlus, Excel, Matlab...)

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

2: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

*****: +1 215 600 3759