Getting started with Simulis[®] Thermodynamics

Use Case 14: Definition and properties calculation of a polymer/solvent mixture

Software & Services In Process Simulation

We guide You to efficiency

© 2021 ProSim S.A. All rights reserved.

Introduction

A polymer is not considered as a classic component because:

- Its properties depend on the length of its chain (represented by the number and the weight average molar mass),
- Its properties depend on the considered repeat units (segments),
- All properties of classical component are not defined for a polymer (no critical point, no saturation pressure...),
- Predictive methods available for property calculations of classical components are not adapted.

Moreover, high molar mass value of polymers leads to particular behaviors of mixtures containing this type of component. As an example, the vapor phase of this type of mixture at vapor-liquid equilibria will never contain polymer.

Consequently, the treatment of polymer/solvent mixtures requires a specific approach in Simulis Thermodynamics. This document presents in details the different steps to follow in order to perform calculation concerning this type of mixture.

Introduction

The following steps are described in this document:

- Step 1: Add a new polymer component (Which data are required? How to supply them?)
- Step 2: Calculation of pure polymer properties
 (Which properties can be calculated? How to calculate them?)
- Step 3: Calculation of polymer/solvent mixture properties
 (Which thermodynamic model to use? How to calculate these properties?)

The example presented in this document is based on the following mixture: Acetone / poly(Styrene5%molar-Butadiene95%molar) with a weight average molar mass of 300 kg/mol and a number average molar mass of 40 kg/mol

Before studying this chapter, it is recommended to consult:

- « Getting Started with Simulis Thermodynamics: Use Case 1 » that explains the method to select components and configure a thermodynamic profile,
- « Getting Started with Simulis Thermodynamics: Use Case 4 » that explains the method to calculate thermodynamic properties of pure components and mixtures in Simulis Thermodynamics.

ACCESS THE THERMODYNAMIC CALCULATOR EDITOR:

- If you are using Simulis Thermodynamics in Excel: Duplicate * Move * Rename * Delete * Edit * Insert Create the calculator object in a spreadsheet Simulis System Simulis Compound rsonnalisées Simulis Compounds Simulis Calculator Simulis Calculators E F
- <u>If you are using Simulis Thermodynamics within another ProSim environment (ProSimPlus,</u> BatchReactor, BatchColumn etc...):

Click on the thermodynamic icon to open the calculator editor:

Simulis Thermodynamics is a

 software component » that you can integrate into different applications:
 ProSim software, Excel, Matlab, your own software, etc...

G

or

1. In « COMPOUNDS » tab: Click on « Create a new compound »

For more details about the creation of a new compound,

- please consult:
- « Getting started with Simulis Thermodynamics, use case 9 »

In order to:

- Predict pure polymer properties,
- Perform calculations of thermodynamic or transport properties of mixtures containing polymers,

the following data must be filled in:

- Segments and segment molar fractions of the polymer,
- The number average molar mass of the polymer (Mn),
- The weight average molar mass of the polymer (Mw).

The following slides explain how to supply these data for the new "SBR" polymer component

Scompound Editor		- • ×
COMPOUND FILE Open File Save as TOOLS Copy Paste	Name: SBR ID: (2884F506-F03D-4E17-A31B-899D1E6E7728) Original IO: Original Io: Import a mol file	I. Specify segments contained in the polymer
Joint Point Import Import Export Formation Properties prediction Properties prediction Polymer properties prediction Create a view Detect this view Modify this view MODIFICATIONS Redo	First Using First Using Conduction, gas phase reaction User properties Projection	Polymer segments Available segments Segment Fraction Image: Segment S
	t	4. Click on "OK"

© 2021 ProSim S.A. All rights reserved.

The temperature-independent properties and the correlations of temperature-dependent properties of a pure polymer can be:

- Directly provided by the user
- Or predicted from data supplied at step 1

Temperature-independent properties used for a polymer are:

- The glass-transition temperature (« Phase change » folder)
- The melting temperature (« Phase change » folder)
- The van der Waals volume (« Atomic » folder)
- The ideal gas enthalpy and Gibbs energy of formation at 25°C (« Phase thermochemistry » folder)
- The vaporization and fusion enthalpies (« Phase change » folder)
- The parachor (« Condensed phase » folder)
- The degree of polymerization (« Polymers-Segments » folder)
- The hypothetical critical temperature (« Phase change » folder)
- The hypothetical critical pressure (« Phase change » folder)
- The hypothetical boiling temperature (« Phase change » folder)
- The hypothetical acentric factor (« Phase change » folder)

For temperature-dependent properties, correlations called « Polymers », specific to polymers are available for calculation of:

- Vapor pressure (fixed to avoid polymer in vapor phase)
- The ideal gas specific heat
- The liquid specific heat
- The solid specific heat
- The liquid density
- The solid density
- The liquid viscosity
- The liquid thermal conductivity
- The solid thermal conductivity
- The surface tension

The predictions of the properties of a pure polymer can only be made correctly if step 1 has been carried out previously

2. Select the properties you want to predict

1. Predict

Expand all			elect all			
roperty	Current value	Dverwrite	Predicted value			
Constant properties						
Degree of polymerization	706,714	~	706,714			
Critical temperature	1143,80 K	~	1143,80 K			
···· Critical pressure	8,31019 atm	~	8,31019 atm			
Acentric factor	17,4487	~	17,4487			
···· Van der Waals volume	3,88400E-005	~	3,88400E-005			
Ideal gas enthalpy of formation at 25°C	6,64794 kcal/mol	~	6,64794 kcal/mol			
Ideal gas Gibbs energy of formation at 25°C	20821,6 kcal/mol	~	20821,6 kcal/mol			Note that it is
Enthalpy of vaporization (boiling point)	5,90433 kcal/mol	~	5,90433 kcal/mol			noogible to pr
Enthalpy of fusion (melting point)	1,82242 kcal/mol	 Image: A set of the set of the	1,82242 kcal/mol			possible to pr
Parachor	150,295	 Image: A set of the set of the	150,295			values of San
Glass-transition temperature	206,829 K	~	206,829 K		/	Lacombo and
Normal melting point	424,306 K	 Image: A set of the set of the	424,306 K		/	
Normal boiling point	1013,40 K	v	1013,40 K			SAFT equation
T* parameter	618,067 K	~	618,067 K			nure polymer
P* parameter	4489,43 bar	×	4489,43 bar)/		puro polymor
rho* parameter	2716,03 kg/m3		2716,03 kg/m3			parameters
r parameter	1286,62	v	1286,62			1
epsilon* parameter	5138,88 J/mol	~	5138,88 J/mol	t i i		
v* parameter	1.14466E-005 m3/m	~	1.14466E-005 m3/m	lol		
c volume translation parameter	0,00000 cm3/g	~	0,00000 cm3/g			
Number of segments (m)	5899,10	v	5899,10			
Segment diameter (sigma)	3,83944 angstrom	~	3,83944 angstrom			
Interaction energy between segments (eps/k)	311.309 K	~	311.309 K			
Temperature dependent properties						
Vapor pressure		~				
🗄 Ideal gas specific heat		~				
Liquid specific heat						
Solid specific heat		~				
Liquid density		v				
+ Solid density		~				
+ Liquid viscosity		~				
E Liquid thermal conductivity		~				
Solid thermal conductivity						
+ Surface tension						

© 2021 ProSim S.A. All rights reserved.

Add the solvent component (acetone in this example)

(For a detailed description of this step, please consult: « Getting started with Simulis Thermodynamics: use case 1 »)

In the "MODEL" tab:

- 1. Select a thermodynamic model well suited to mixtures containing polymers
- 2. Select a set of methods for transport properties calculation which is adapted to mixtures containing polymers

Thermodynamic calculator editor			-	o x	
CALCULATOR	This window helps you to define the	context of your thermodynamic calculate	é.		
FILE 🔺		INARIES PARAMETERS			
🛁 Save as	Name	Sanchez-Lacombe	THERMODYNAMI	C MODEL	
PACKAGE A	Category	All the profiles	CONFIGURATION		
mport a package	Profile	Sanchez-Lacombe	Thermodynamic assist	tant	
🕤 Build a package	Approach type	Using Equation of state	Thermodynamic help		
Select a CAPE-OPEN package	Equation of state	Sanchez-Lacombe	Use a specific model for	pure water	
SERVICES A A	Alpha function	Not defined		_	
Export as a PSF file	Activity coefficient model	Not defined	The recon	nmende	d thermodynamic models for this type
🔀 Diagrams	Pure liquid fugacity standard state	Standard		s are: Sanch	az-l acombe equation of state
 Export as a PVT file 	Liquid molar volume	Equation d'état		nsiderec	t in this example)
Stream	Transport properties	Polymers	- The	GC-PP	C-SAFT equation of state
24 Sigma profiles	User-defined thermodynamic model	None	- The	UNIFA	C-FV activity coefficients model
MODIFICATIONS		Model index 1 +	— - The	Flory-⊢	luggins activity coefficients model
	Comments :			more»	sat of proportios is well suited to
Name			calculation	n of tran	sport properties of this type of mixture
Comments			Galoulation	i oi tiun	opent properties of this type of mixture
Calculator type					
Native 👻	L				
Show the expert mode			Ok	Cancel	

In the "BINARIES" tab:

- Add the binary interaction parameter of the equation of state by providing a value to the Akij coefficient (Akij = 0.035)

Thermodynamic calculator editor		-	- X	:
 Thermodynamic calculator editor CALCULATOR FILE Open Save as PACKAGE Show the package manager Import a package Build a package Build a package Select a CAPE-OPEN package Services Calculate Export as a PSF file Diagrams Residue Export as a PVT file Stream 	Compounds Model BINARIES PARAMETERS These parameters correspond to the general values and are used if the user has not provided specific parameters (buttons to the right of each option in the thermodynamic profile) Binaries view:	BINARIES ACTIONS	A ed	
MODIFICATIONS	Not supplied Imported Estimated Comments :	Ok	Cancel	

	Before using a thermodynamic model (Sanchez- Lacombe equation of state in this case), the user must be sure that all the required parameters are available for all components
Residue Image: Remove all the compoundation of the selection of the selectio	nd unds n mpound. mpound. mpound. properties original view Create a view Car Compound Editor This window helps you visualize the compounds properties. Complete Properties SBR ACETONE Complete Properties Group contribution m Complete Properties Complete Properties Complete Properties Complete Properties Complete Properties Complete Properties Complete Properties Complete Properties Complete Properties Complete Complete Properties Complete Properties Complete Complete Properties Complete Properties Complete Properties Complete Complete Properties Complete
 If one of these parameters is not available: For a polymer component, the « polymer prediction » method presented on step 2 can be employed For a solvent component, these parameters are implicitly estimated from other data during the calculation of a property. (For more details about these estimation methods, please consult the Sanchez-Lacombe paragraph of the thermodynamic models manual, available from the « MODEL » tab of the calculator) 	MODIFICATIONS Indo Redo UNIT SYSTEMS For the properties POlymers-Segments Sanchez-Lacombe T* parameter 618,067 K 484 K P* parameter 716,03 kg/m3 917 kg/m3 epsilon* parameter 1,1446E-005 m3 0,000000 cm3/g 0,000000 cm3/g

In the excel sheet of your calculator:

1. Select the « bar » unit for the pressure and the « K » unit for the temperature for the input and output unit systems

For more details about the modification of unit systems, please consult:

« Getting started with Simulis Thermodynamics, use case 1 »

2. Display the name of the components and the selected units

- The index of the polymer is 1, the index of the solvent is 2
- In this example, the weight fraction is employed. As the polymer is a heavy molecule, its weight fraction is high even if its molar fraction is very low

3. Provide the experimental data (bubble pressure data in this example)

🔔 Unit sv

click "App applicati

ISO

ProSim British Simulis Applicati

stem			×
ICATION UNIT SYSTEM	Use this window to modify th application.	e unit system used by your	
	Quantity	△ Unit	-
edefined unit system in this list and	Molar mass	kg/mol	
system to use theses units in your	Molar volume	m3/kmol	
	Percentage	96	
	Power	J/s	
	Pressure	bar	
	Pressure drop	Pa	
n default	Quadripole moment	Buckingham	
in derbait	Resistivity	Ohm.m	
	Revolution speed	rad/s	
	Surface tension	N/m	
	Temperature	к	
	Temperature drop	ĸ	
	Thermal conductivity	W/m/K	
A	Time	5	
	Volume	m3	
by to the clipboard	Volume flow rate	m3/s	
	Volumic power	W/m3	-
ave as user default		Ok	Cancel

	EXP											
	Liquid Equilibria of Coplymer + Solvent and Homopolymer + Solvent Binaries: New Experimental Data and Their Correlation", J. Chem. Eng.											
	T/K 323,15											
	w2 / kg/kg	P Bubble / bar										
	0,003	0,137										
	0,023	0,265										
	0,04	0,363										
	0,056	0,415										
•	0,067	0,453										
	0,072	0,465										
	0,067	0,472										
	0,066	0,473										
	0,078	0,511										
	0,079	0,523										
	0,08	0,533										
	0,091	0,552										
	0,115	0,596										
	0,11	0,597										
	0,12	0,613										

4. Perform a TP-Flash calculation with the Sanchez-Lacombe equation of state (calculation of the vapor ratio, the liquid and vapor phases compositions at fixed temperature, pressure and global composition)

4.1. Preparation of the calculation in the Excel sheet: Create the following table

				'P flash <u>ca</u>	lculation			
₩17 kg/kg	₩2	2 i kgikg						
0	1,8	0,2						
P / bar	- T i	IK –	tvap	¥1	₩2	y1	y2	
0,	01	323,15						Provide the global weight compo
0,0	02	323,15						of the mixture, the temperature a
0,0	03	323,15						pression for the calculation
0,0	04	323,15						
0,0	05	323,15						
0	D,1	323,15						
0,1	15	323,15						
0	1,2	323,15						
0,2	25	323,15						
0	1,3	323,15						
0,3	35	323,15						
0	1,4	323,15						Define a table
0,4	45	323,15						area dedicated
0	1,5	323,15						to the calculated
0,5	55	323,15						values
0),6	323,15						
0,6	65	323,15						
0	1,7	323,15						

19

4. Perform a TP-Flash calculation with the Sanchez-Lacombe equation of state (calculation of the vapor ratio, the liquid and vapor phases compositions at fixed temperature, pressure and global composition)

4.2. Add the calculation function

4. Perform a TP-Flash calculation with the Sanchez-Lacombe equation of state (calculation of the vapor ratio, the liquid and vapor phases compositions at fixed temperature, pressure and global composition)

4.2. Add the calculation function

4. Perform a TP-Flash calculation with the Sanchez-Lacombe equation of state (calculation of the vapor ratio, the liquid and vapor phases compositions at fixed temperature, pressure and global composition)

4.2. Add the calculation function

		TP f	lash calcula	ation											
w17kg/kg	#21kg/kg														
0,8	0,2									_					
P / bar	T7K	tvap	w1	w 2	y1	y2					6 Exton	d the cal	oulation ,	ortical	11.7
0,01	323,15	0,199285	0,999107	0,000893		D 1					O. LXIEN	u ine cai		/Ertical	ן עי
0,02	323,15						I				over the	whole ta	nble		
0,03	323,15									L					
0,04	323,15														
0,05	323,15														
0,1	323,15														
0,13	323,15														
0.25	323,15														
0.3	323,15														
0,35	323,15														
0,4	323,15									70.4			•		
0,45	323,15							u 1 J kalka	n2 J kalka	IPN	ash calcula	tion			
0,5	323,15														
0,55	323,15							0,0	0,2					- 2	
0,6	323,15							Prbar		tvap	0.000407	•2	yı 🦷	yΖ	_
0,65	323,15							0,0	1 323,15 222,15	0,199285	0,999107	0,000893	U 0		4
0,7	323,15							0,02	020,10	0,130330	0,000201	0,001133	0		
								0,03	0 323,13	0,137013	0,337201	0,002713	0		4
								0,04	+ 323,13 : 323,13	0,131001	0,330340	0,003034	0		4
								0,05) 323,13 1 323,15	0,130301	0,3333330	0,004002	0		1
								0,	i 323,13 5 323,15	0,132203	0,330422	0,003310	0		
								0,10) 323,15 2 323,15	0,101021	0,505012	0.020904	0		1
								0.2	5 323.15	0,10232	0 972577	0.020304	0		i
								0.20	323,15	0 171272	0.965335	0.034665	0 N		i
								0.35	5 323 15	0.164236	0.957208	0.042792	ň		i
								0,00	i 323 15	0.156097	0.947976	0.052024	ň		il
								n 49	5 323 15	0.146512	0.93733	0.06267	ň		i
								0.9	323 15	0.134958	0.924817	0.075183	ň		i
								0.59	323 15	0 120625	0.909737	0.090263	ň		i
								0.6	323 15	0.102046	0.890925	0.109075	ň		i
								0.65	5 323.15	0.076462	0.866247	0.133753	Ő		i
								0.5	7 323 15	0.037399	0 831133	0 168867	ň		1
								0,1	- JEJ, IJ	0,031333	0,001100	0,100001	U		<u> </u>

The results obtained are plotted on the following graph

T/K	550										T/K	550	
P / bar	1										P / bar	1	
w1 / kg/kg	w2 / kg/kg	λL / W/m/K							7		w1 / kg/kg	w2 / kg/kg	λL / W/m/K
0,995	0,005	0,11350886			6. Extend	d verticall	y the cal	culation			0,995	0,005	0,11350886
0,99	0,01				in all the	table					0,99	0,01	0,11124356
0,985	0,015								J		0,985	0,015	0,10910869
0,98	0,02										0,98	0,02	0,10709219
0,975	0,025										0,975	0,025	0,10518352
0,97	0,03										0,97	0,03	0,10337339
0,965	0,035										0,965	0,035	0,10165361
0,96	0,04										0,96	0,04	0,10001691
0,955	0,045										0,955	0,045	0,0984568
0,95	0,05										0,95	0,05	0,09696748
0,945	0,055										0,945	0,055	0,09554377
0,94	0,06										0,94	0,00	0,09418099
0,935	0,065										0,333	0,003	0.09162168
0,93	0,07										0,925	0.075	0 09041787
0,925	0,075										0.92	0.08	0.08926029
0,92	0,08										0.915	0.085	0.08814606
0,915	0,085										0.91	0.09	0.08707255
0,91	0,09										0,905	0,095	0,08603732
0,905	0,095										0,9	0,1	0,08503816
0,9	0,1			0 115							0,895	0,105	0,08407302
0,000	0,103			^{0,115} T						,	0,89	0,11	0,08314002
0.885	0 115										0,885	0,115	0,0822374
0,88	0,12			0,11 -							0,88	0,12	0,08136356
				0 105 -									
				0,100				/					
				0,1 -									
			Ϋ́										
			N/N	0,095 -									
			~	0,09 -									
				0.085									
				2,000									
				0.08									
				0,88	0,9	0,92	0,94	0,96	0,98	1			
						v	v1						

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

www.prosim.net

info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

2 1 215 600 3759