Getting started with ProSimPlus®

Use Case 2: Conducting a Pinch Analysis

Software & Services In Process Simulation

We guide You to efficiency

© 2019 ProSim S.A. All rights reserved.

Introduction

The pinch analysis is a method to minimize process energy consumptions by optimizing heat transfers between unit operations. It allows to identify the minimum consumptions of utilities and respond to the following question: are there potential gains of energy?

This analysis can be conducted using the « Pinch analysis » module in ProSimPlus or using the « Simulis Pinch » Excel Add-in (provided with ProSimPlus).

This document presents the steps to follow in order to perform the calculations in ProSimPlus or in Excel:

- Pinch analysis conducted in ProSimPlus
- Pinch analysis conducted with the « Simulis Pinch » Excel Add-In
- Advanced calculations...

Before studying this chapter, it is recommended to consult « Getting Started with ProSimPlus, Use Case 1 » that presents the main features of ProSimPlus.

This document is based on the ProSimPlus application example « Cyclohexane Plant », available on ProSim website (<u>www.prosim.net</u>).

Open the example in ProSimPlus

3. Drop the module in the flowsheet

The « Pinch analysis » module does not require to be connected to any module of the flowsheet. It automatically retrieves the data that is needed to perform the calculations.

1. Double-click on the « Pinch analysis » module to open its configuration window

Advanced parameters			Click on the module Pinch
Advanced parameters			Click on the module Pinch Pinch
Advanced parameters			Click on the mou Pinch
Advanced parameters			Click on t
To Feed M101 E101A E102			Che
To Teed M101 feed M101 E101A E102			
To To feed M101 E101A E102			
To feed M101 feed M101 E101A E102			
Feed M101 feed M101 E101A E102			
feed M101 E101A E102			
E101A E102			
E102			
R101			2. Fill in the pinch value
E101B			
E103			(10°C by default)
S101			
C101			
C101			
Process outlet 3			
M101			
E104A			
C101			
Process outlet 2			
E104B			
E105			
Process outlet 1			
	Process outlet 2 E104B E105 Process outlet 1	Process outlet 2 E104B E105 Process outlet 1	Process outlet 2 E104B E105 Process outlet 1

Once the configuration window is open, click on \ll F1 \gg to access the help file about this module.

ne: Pinch a	nalysis					
SC:						
entification	Parameters	Scripts Repo	rt Notes Adva	anced parameters	 	
onfiguration	Advance	d options			/	
-						
Pinch	10	к	~			
Stream	name 🛛 🛆	Туре	From	То		
C01		Process	Benzene Feed	M101		
C02		Process	Hydrogen feed	11101		
C03		Process	M101	E101A		
C04		Process	E101A	E102		
C06		Process 🔻	MS01	R101		
C07		Process	R101	E101B		
C08		Hot utility	E101B	E103		
C09		Cold utility	E103	S101		
C101 - Cor	ndenser	ribeces	C101	C101		
C101 - Rel	boiler	Process	C101	C101		
C11		Bring to ambient	V102	Process outlet 3		
C13		Process	K101	M101		
C15		Process	V101	E104A		
C16		Process	E104A	C101		
C17		Bring to ambient	C101	Process outlet 2		
C18		Process	C101	E104B		
C19		Process	E104B	E105		
C20		Bring to ambient	E105	Process outlet 1		

- All streams can be « classified »: • Process • Hot utility
 - Cold utility
 - Integrated

For reasons of safety and process flexibility, it is not recommended to replace the reactor thermal fluid by a « process » stream.

Change the « Type » of the CO6 stream from « Process » to « Integrated ».

Only « Process » streams are taken into account in the energy integration.

e.	Pinch analys	is				
c:						
ntific	cation Parar	neters	Scripts Rep	ort Notes Adv	anced parameters	
nfig	uration Adv	ance	d options			
Pino	ch	10	к	· ~		
	Stream name	Δ	Туре	From	То	
CO	1		Process	Benzene Feed	M101	
CO	2		Process	Hydrogen feed	M101	
CO	3	_	Process	M101	E101A	
CO	4		Process	E101A	E102	
CO	6		Integrated	MS01	R101	
CO	7		Process	R101	E101B	
C0	8		Process	E101B	E103	
C0	9		Process	E103	S101	
C1	01 - Condens	er	Process	C101	C101	
C1	01 - Reboiler		Process	C101	C101	
C1	1		lgnored 🔻	V102	Process outlet 3	
C1	3		Bring to ambien	t K101	M101	
C1	5		Ignored	V101	E104A	
C1	6		Process	E104A	C101	
C1	7		Ignored	C101	Process outlet 2	
C1	8		Process	C101	E104B	
C1	9		Process	E104B	E105	
C2	0		Ignored	E105	Process outlet 1	

It is possible to take into account the heat that is required to bring the output streams to ambient temperature:

- Ignored
- Bring to ambient

1. Change the « Type » of the output streams C11, C17 and C20 to « Ignored » so that they are not taken into incount in the analysis

2. Click on « OK » to confirm

1. Click on the green arrow to run the simulation

In order to use the Excel Add-In (called « Simulis Pinch ») to conduct a pinch analysis, it is necessary to register it in Excel using one of the following methods (this step has to be done only once, during the installation or the first use):

- 1. In the « ProSim » folder of apps, click on « Register Simulis Pinch addin »
- 2. Find directly the tool « Register Simulis Pinch add-in » on your computer (using the search bar)

1. Register Simulis Pinch by clicking on « Register »

In ProSimPlus, click on the Excel icon

The data needed to perform the pinch analysis is automatically generated at the end of the Excel report.

The « **Stream** » column gives the names of the streams involving a heat transfer.

PINC				
Stream	Physical state	F*Cp (kcal/h/K)	T In (K)	T Out (K)
C03	LV	86269.32059	323.8060452	384.0895964
C04	v	46093.73542	410	422
C03	v	45471.17609	384.0895964	410
C15	LV	15784.53556	322.1490638	408
Rebo.C101	LV	14819198.89	484.2917468	484.4009473
C07	v	42808.7678	497	392.8551551
C07	LV	96724.42876	392.8551551	372.9999326
C08	LV	67207.89507	372.9999326	322
Cond.C101	LV	850.0453284	434.2743775	276.5288388
C18	L	20019.60201	484.4009473	416.7114321
C19	L	15795.65715	416.7114321	322

The « **Physical state** » column indicates:

- « L » for liquid
- « V » for vapor
- « LV » for vapor-liquid (condensation or evaporation)

PINC				
Stream	Physical state	F*Cp (kcal/h/K)	T In (K)	T Out (K)
C03	LV	86269.32059	323.8060452	384.0895964
C04	V	46093.73542	410	422
C03	V	45471.17609	384.0895964	410
C15	LV	15784.53556	322.1490638	408
Rebo.C101	LV	14819198.89	484.2917468	484.4009473
C07	V	42808.7678	497	392.8551551
C07	LV	96724.42876	392.8551551	372.9999326
C08	LV	67207.89507	372.9999326	322
Cond.C101	LV	850.0453284	434.2743775	276.5288388
C18	L	20019.60201	484.4009473	416.7114321
C19	L	15795.65715	416.7114321	322

The « F^*Cp » column displays the heat duty exchanged divided by ΔT (temperature difference between the inlet and the outlet of the heat exchange), expressed in kcal/hr/K.

The « F*Cp » of a stream corresponds to the mass flowrate (F) multiplied by the specific heat capacity at constant pressure (Cp).

In other words, the heat duty exchanged to heat or cool the stream (noted Q) is equal to:

$$Q = F * Cp * \Delta T = F * Cp * (T_{out} - T_{in})$$

$$Q = F * C_{l}$$

The inlet temperature (Tin) and the outlet temperature (Tout) are expressed in Kelvin.

If the temperature increases (Tout > Tin), the stream will be considered as a cold stream (needs to be heated).

If the temperature decreases (Tout < Tin), the stream will be considered as a hot stream (needs to be cooled down).

During condensation, evaporation or heat exchange at constant temperature (phase change of a pure substance, for example), the ΔT is automatically set to ± 0.01°C and the F*Cp is calculated consequently.

PINC				
Stream	Physical state	F*Cp (kcal/h/K)	T In (K)	T Out (K)
C03	LV	86269.32059	323.8060452	384.0895964
C04	V	46093.73542	410	422
C03	V	45471.17609	384.0895964	410
C15	LV	15784.53556	322.1490638	408
Rebo.C101	LV	14819198.89	484.2917468	484.4009473
C07	V	42808.7678	497	392.8551551
C07	LV	96724.42876	392.8551551	372.9999326
C08	LV	67207.89507	372.9999326	322
Cond.C101	LV	850.0453284	434.2743775	276.5288388
C18	L	20019.60201	484.4009473	416.7114321
C19	L	15795.65715	416.7114321	322

1. Run Simulis Pinch

Depending on the definition of the decimal separator of your computer, it might be necessary to replace points "." by comma "," so that these values are well interpreted in MS-Excel.

20019.60201

15795.65715 416.7114321

484.4009473

2. Select the columns F*Cp, Tin and Tout (only numerical values, not the column headings, as shown in the screenshots below)

Energy integration calculation	8					
Pinch data selection Mcal/h Valid selection		PINC				
Pinch value 10 °C Valid value		Stream	Physical state	F*Cp (kcal/h/K)	T In (K)	T Out (K)
		C03	LV	86269.32059	323.8060452	384.0895964
		C04	V	46093.73542	410	422
		C03	V	45471.17609	384.0895964	410
	1	C15	LV	15784.53556	322.1490638	408
Options Help About	Calculate Cancel	Rebo.C101	LV	14819198.89	484.2917468	484.4009473
		C07	V	42808.7678	497	392.8551551
		C07	LV	96724.42876	392.8551551	372.9999326
		C08	LV	67207.89507	372.9999326	322
		Cond.C101	LV	850.0453284	434.2743775	276.5288388

C18

C19

L

L

416.7114321

322

1. Change the unit to match the specified unit in the MS-Excel workbook (kcal/h in this case)

2. Provide the pinch value (10°C by default)

Q 2019 ProSim S.A. All rights reserved.

4 new spreadsheets are automatically generated in Excel:

- 1. The grand composite curve
- 2. The hot and cold composite curves
- 3. The streams considered in the analysis (hot and cold streams)
- 4. The pinch analysis results (data and results summary)

PINC					
Stream	Physical state	F*Cp (kcal/h/K)	T In (K)	T Out (K)	Difficulty
C03	LV	86269.32059	323.8060452	384.0895964	
C04	V	46093.73542	410	422	
C03	V	45471.17609	384.0895964	410	
C15	LV	15784.53556	322.1490638	408	
Rebo.C101	LV	14819198.89	484.2917468	484.4009473	
C07	V	42808.7678	497	392.8551551	
C07	LV	96724.42876	392.8551551	372.9999326	
C08	LV	67207.89507	372.9999326	322	
Cond.C101	LV	850.0453284	434.2743775	276.5288388	
C18	L	20019.60201	484.4009473	416.7114321	
C19	L	15795.65715	416.7114321	322	
Grand compo	osite curve Com	oosite curves (TQ)	treams Pinc	h results PSPS_EC	2_EN - Cyclohexane Plant

1. The grand composite curve:

Grand composite curve

2. The hot and cold composite curves:

Composite curves (TQ)

3. The streams (hot and cold streams):

4. The pinch analysis results (data and results summary):

		DA	ATA						RESULTS			
Change and an	F*Cp	Tempe	ratures	Enthalpy flow	Hat stream 3	Hot co	mposite curve	Cold co	nposite curve		Grand	l composite curve
Stream names	(kcal/h/°C)	Input (°C)	Target (°C)	(kcal/h)	not stream r	Flow (kcal/h)	Temperatures (°C)	Flow (kcal/h)	Temperatures (°C)		Flow (kcal/h)	Mean temperatures (°C)
C07	42 808.8	497.0	392.9	4458 312.5	TRUE	0.0	276.5	4388 656.5	322.1	Cold utility	4388 656.5	271.5
C07	96 724.4	392.9	373.0	1920 485.0	TRUE	38 652.5	322.0	4414 811.2	323.8		4350 003.9	317.0
C08	67 207.9	373.0	322.0	3427 598.1	TRUE	4315 180.4	373.0	10566 980.0	384.1		3498 968.4	327.1
Cond.C101	850.0	434.3	276.5	134 090.9	TRUE	6566 169.5	392.9	12031 628.8	408.0		3386 179.3	328.8
C18	20 019.6	484.4	416.7	1355 117.2	TRUE	7984 531.9	416.7	12122 571.2	410.0		4099 518.1	368.0
C19	15 795.7	416.7	322.0	1496 029.3	TRUE	9102 912.4	434.3	12675 696.0	422.0		3874 831.0	387.9
C03	86 269.3	323.8	384.1	-5200 621.0	FALSE	12252 283.1	484.4	12675 696.0	484.3		3927 417.4	389.1
C04	46 093.7	410.0	422.0	-553 124.8	FALSE	12791 633.0	497.0	14293 959.9	484.4		3968 164.8	411.7
C03	45 471.2	384.1	410.0	-1178 176.5	FALSE						3965 043.0	413.0
C15	15 784.5	322.1	408.0	-1355 117.2	FALSE						3928 628.5	415.0
Rebo.C101	14819 198.9	484.3	484.4	-1618 263.9	FALSE						3717 612.4	427.0
		Global d	uty (kcal/h)	2886 329.5							3572 783.6	429.3
											423 412.9	479.4
DTMIN (°C)	10.0										0.0	489.3 Pir
											1613 589.2	489.4
										Hot utility	1502 327.0	492.0
						Cold temperatu	re at the pinch (°C)		484.3			
						Pinch temperat	ure (°C)		489.3			
						Hot temperatur	e at the pinch (°C)		494.3			
						Cold utility (kca	l/h)		4 388 656.5			
						Maximum of er	nergy recovery (kcal/h)		8 402 976.5			
						Hot utility (kcal,	/h)		1 502 327.0			
						Hot utility minir	num temperature (°C)		494.4			
						Cold utility max	imum temperature (°C,)	266.5			

List of theoretical heat exchangers:

#	Heat duty exchanged		Cold streams			Hot streams		LMTD	UA Factor
(-)	(kcal/h)	Input T (°C)	Output T (°C)	Stream(s)	Input T (°C)	Output T (°C)	Stream(s)	(K)	(kcal/h/K)
1	26 154.7	322.1	323.8	C15	373.9	373.6	C07; Cond.C101; C19	50.8	515.0
2	2 151 358.4	323.8	344.9	C03; C15	392.9	373.9	C07; Cond.C101; C19	49.0	43 893.6
3	1 418 362.3	344.9	358.8	C03; C15	416.7	392.9	C07; Cond.C101; C19	52.8	26 867.5
4	1 118 380.5	358.8	369.7	C03; C15	434.3	416.7	C07; Cond.C101; C18	61.2	18 283.4
5	2 928 716.4	369.7	408.0	C03; C15	480.9	434.3	C07; C18	68.6	42 677.1
6	90 942.4	408.0	410.0	C03	482.3	480.9	C07: C18	72.6	1 252.4

The results obtained using the Excel Add-in are equivalent to those obtained with the « Pinch Analysis » module in ProSimPlus

With ProSimPlus:

With the Excel Add-In:

3. Advanced calculations...

It is possible to use ProSimPlus to perform a case study focusing on the pinch value (for example).

1. Click on « Case Study » within the « Simulation » tab

File Edit Configuration Flowsheet Tools	Simulation Windows Help
	Simulation report parameters
	Use a lightweight simulation window
N T- T- 🔊 🖓 🦚	Start the circulation 50 D m T 123 P T T = T T T 123 P
	Start the simulation nauced E8
Infary Tree view Properties	
Feed / Product stream	Start a full simulation F11
	III Start a full simulation pausee F10
	E Last simulation const E12
	🔁 Case study
Variable Liquid extraction	🙇 Last case study results
Heat exchangers	
X Mixers / Splitters / Separators	
🌣 Solids processing	Pinch analysis
Energy efficiency	
Economic evaluation	
V Optimization & Design specifications	
∛ Tools	
↓ User defined unit operations	
Subflowsheet	
	K101 \ /
•	

3. Advanced calculations...

1. Select the « Pinch » parameter within the « Pinch analysis » unit operation

Case study Parameter Unit operation: Pinch analysis (Pinch analysis) Parameter: Pinch Initial value: 0 Step: Final value: 20 Number of points: Unit:	X	 2. Select the value: from step of 2°C 3. Select the to monitor: 	e range of pinch 0°C to 20°C with a e parameter(s) for example
		the « Maxim	num energy
Monitoring Filter by Type: Pinch analysis Vunit operation:	Pinch analysis	recovery »	ium energy
Selected Variable Form	Compounds Stages		
Pinch analysis Cold utility Hot utility		 Case study results Image: Image of the study results Image of the study results 	- 🗆 X
Maximum energy recovery		Pinch analysis -> Max	imum energy recovery (kcal/h)
	Ok Cancel	Maximum energy recovery (kcal/h) 8900000 T 8800000 T	
4. Click on « OK »		8700000 8600000 8500000 8400000 8300000	
	5. The results ca be plotted	0 1 2 3 4 5 6 7 Pin	8 9 10 11 12 13 14 15 16 17 18 19 20 ch analysis -> Pinch (K)

© 2019 ProSim S.A. All rights reserved.

3. Advanced calculations...

So far, the calculations performed correspond to the first phase of process energy optimization: it is the energy diagnostic. At this stage, it is possible to conclude about the potential gains of energy and the advantages of changing the process configuration. A second phase will allow to generate the optimum heat exchangers network, corresponding to the best compromise between investment and operating costs as well as flexibility and process safety.

This second phase can be performed by subscribing to the full version of Simulis Pinch[®] (additional information is available on ProSim website: <u>www.prosim.net</u>). The use of Simulis Pinch[®] for the generation of heat exchangers network is detailed in the « Getting Started with Simulis Pinch[®] » documents.

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

215 600 3759