
© 2024 Fives ProSim S.A.S. - All rights reserved.

Getting Started
with ProSimPlus®

Case 7: Integrating Artificial Intelligence (AI)
into ProSimPlus

2

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Introduction

Artificial Intelligence (AI) and process simulation can work together to
provide significant advances in the field of process engineering.

By exploiting advanced Machine Learning techniques, AI can analyze
existing simulation models, extract key information and create faster
predictive models.

These AI-powered models, also known as Surrogate Models, can
significantly reduce computing times by optimizing complex process
engineering operations.

3

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Introduction

This document outlines the steps involved in creating a Surrogate Model
in ProSimPlus.

The steps are as follows:

1. Creation of a dataset by ProSimPlus

2. Model training

3. Model deployment within ProSimPlus

Before delving into this chapter, it is highly recommended to refer to
"Getting Started with ProSimPlus, Use Case 1," which introduces the primary features of ProSimPlus

References:
R. Bounaceur, O. Baudouin, "Couplage entre logiciel PSE et modèles fondés sur des algorithmes d’Intelligence Artificielle",
tutorial SFGP 2022, Toulouse (2022)
R. Bounaceur et al., "Development of an artificial intelligence model to predict combustion properties, with a focus on auto-ignition
delay", J. Eng. Gas Turbines Power., 1-28 (2023)

4

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Prerequisite

 Firstly, installation of the Python software is required.

 A few libraries for Python can be used, including (but not limited to):

FunctionLibrary

Integrate the surrogate model into ProSimPlusPywin32

Manipulate matrices or multidimensional arrays in PythonNumPy

Manipulate objects (dataframe)Pandas

Create graphicsMatplotlib

Open-source Python library for machine learningScikit-learn

Create and execute Python code interactively, combine code, visualizations,
explanatory text and results

Jupyter

Save trained models and reload them laterJobLib

 To install these libraries, open the command prompt and type:

pip install Library name

5

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Introduction of the process: Simple Example

For this study, the example is based on a simple process available in the ProSimPlus samples
directory under the name "PSPS_EX_EN-Simple-Example".

E101

S101

S102

P101

M101

C1 C2

C5

C4

C6

C7

C8

C3

6

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

 The first step is to choose the training subject and generate a dataset.

 In the absence of experimental data, we will opt to use ProSimPlus with an
external solver to generate the necessary values. An alternative would be to
use the sensitivity analysis or the console version, but this would be less
practical.

 The Python source file that will be used to generate the dataset is called
“train.py”

Click on this icon to access
the external solver

The detailed explanation of the parameters to be modified in the Python file
can be found directly within the document: “train.py”

1. Creation of a dataset

7

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

 We need to specify the input values (module parameters) and run
simulations to calculate the output values (results).

 We will ensure to avoid creating an input dataset that is entirely
random or excessively linear, as it may not necessarily be
representative of our model.

 To achieve this, we will use the Sobol sequences method, which will
easily provide us with quasi-random values that adequately cover the
selected intervals.

1. Creation of a dataset

8

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

 The "sobol.py" python source code is included with this document.

 The invocation of the Sobol sequences method is performed as follows:

tab = sobol.i4_sobol_generate(ndim, npoints, npass)

• ndim is the number of dimensions (inputs) (from 1 to 40),

• npoints is the total number of points,

• npass is the number of initial points in the sequence to skip, in order
to avoid encountering the first points that are nearly identical.

• The returned value tab is a fixed-size homogeneous NumPy array,
with dimensions corresponding to the provided arguments.

It is possible to use other sampling methods than Sobol
sequences, but they are not explained in this document.

1. Creation of a dataset

9

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

E101

S101

S102

P101

M101

C1 C2

C5

C4

C6

C7

C8

C3

We are going to assume that:

 the data (inputs) will be
limited to the partial flow
rates of the feed stream,
the outlet temperature of
the exchanger "E101", as
well as the temperature
and pressure of the flash
"S102".

1. Creation of a dataset

Fi
C1

T E101

T S102

P S102

10

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

E101

S101

S102

P101

M101

C1 C2

C5

C4

C6

C7

C8

C3

 the results (outputs) will be
represented by the partial
molar flow rates of the two
outlet streams ("C6" and
"C4"), the temperature of
stream "C4", as well as the
heat duties of the exchanger
"E101" and the flash "S102"

1. Creation of a dataset

Fi
C6

Fi
C4

TC4

Q E101

Q S102

11

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

To achieve this, we will configure the external solver by incorporating the
results (outputs) into the “objective functions”:

Results (outputs) = Objective functions

Double-click to access to
the various parameters

1. Creation of a dataset

12

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

And the data (inputs) into the action variables:

Data (inputs) = Action variables

Remember to set
boundaries for the variables

1. Creation of a dataset

13

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

 We also include a parameter
named "NUM" in the
"System parameters" tab to
specify the number of points to
generate. This parameter is
used in the source file as the
total number of points generated
by the Sobol sequence.

 Click on the "Run" button to
perform simulations on the
dataset.

 If everything went well, we now
have a dataset available in
"traindata.txt".

The number of selected
points will be directly related
to the simulation time. A
compromise value will be
chosen between accuracy
and computation time

Adapt the contents of the "train.py" file
to the parameters defined previously

1. Creation of a dataset

14

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

To make things clearer and more understandable, this part will be carried
out in Jupyter Notebook

 Open the command prompt and type the following: Jupyter notebook

 Open the notebook titled "Model Training.ipynb"

The explanation regarding the parameters to be modified
for the model training process is detailed in this file

2. Model training

15

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Data cleaning is a crucial step before creating a machine learning model. It
involves taking measures to process and correct raw data so that the model
can learn effectively and produce high-quality results.

The main steps of the process are as follows:

 Data Collection

 Data Processing (Handling incorrectly labeled data, dealing with “NaN” values…)

 Normalization or Scaling
If the various data inputs have significantly different scales, it is advisable to normalize or scale
them to prevent certain inputs from excessively dominating the model.

 Data Splitting
Divide the data into training and test sets to evaluate the model's performance in an unbiased
way. It is possible to choose the percentage associated to each set.

1. Data verification and cleaning

2. Model training

16

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Various learning methods are available, and in this study, we are using a
KernelRidge regression model, which is a regularized regression
technique utilizing kernel methods for predictions. Other learning models
could also be employed, such as for instance:

 kNN (k-Nearest Neighborhood)

 DecisionTree

 RandomForest

 MLP (Multi-Layer Perceptron) – Artificial Neural Networks

There is no one-size-fits-all solution to determine the best regression
algorithm for all scenarios. The most recommended approach is to
experiment with several models, evaluate them in terms of performance,
and select the one that achieves the best results on the available dataset.

2. Machine Learning Algorithm

2. Model training

17

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

3. Evaluation parameters

Here are some commonly used metrics to evaluate the performance of
learning models, especially in the case of regression:

 Coefficient of Determination (R2 score)
A high R2 score (≈1) indicates that the model effectively explains the data variation, while an
R2 score close to 0 or negative suggests that the model does not accurately represent the
data.

 Mean Absolute Error (MAE)
The MAE quantifies the average difference between the model's predicted values and the
actual values.

 Mean Squared Error (MSE)
The MSE measures the average of the squared differences between predicted values and
actual values. A lower MSE indicates that the model's predictions are closer to the actual
values.

The obtained metrics should be in the same order of magnitude for the
training and test sets.

2. Model training

18

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

 After we have trained our model, we can utilize Joblib, a tool that
facilitates saving data structures to a file so that they can be reloaded
later (for instance, in ProSimPlus).

 Additionally, we store the minimum and maximum values of both the
input data and the output results. As our model is normalized, these
values are needed for the transformation of results back into their original
scale.

4. Saving with Joblib

2. Model training

19

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Following the training phase of the model in Jupyter Notebook, a model is
created and stored in the "model.joblib" file. The next step involves setting up
the necessary framework to integrate it into ProSimPlus.

This structure is relatively simple and will consist of:

 A Windows Script unit operation

 A Python program able to make predictions by processing the data and
providing the output results

"SimpleExampleModel.py"

Data

Results

3. Model deployment within ProSimPlus

20

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

We will now create a Python component following the Microsoft COM
standard, which will be used from the VBScript code. The primary
advantage of this method is that the Python program can remain in
memory throughout the entire simulation.

The source code for this component can be found in the file
"SimpleExampleModel.py".

The code is thoroughly described through comments within the file.

3. Model deployment within ProSimPlus

21

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Here are some explanations about the codes:

 _reg_progid_
The ProgID (Programmatic Identifier) is a character string used to uniquely identify a class of
COM (Component Object Model) objects that can be created and utilized within a script. This
identifier is crucial and plays a pivotal role when instantiating an object in VBScript
(CreateObject("My.progid")).

 _reg_clsid_
The GUID(Globally Unique Identifier) is a unique identifier used to reference the class.

 _public_methods_
In this context, we are dealing with an array of strings that define the methods (functions or
routines) that will be accessible within our class. For our example, we are introducing only two
methods: one for performing calculations (predictions) and another for printing results in the
report.

3. Model deployment within ProSimPlus

22

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

 Using the "model.joblib" file

The "Calculate" method will be used for making predictions.

To do this, the process involves retrieving the input data and predicting the results by simply
calling the 'predict' method. The use of this 'predict' method becomes possible after loading
the model that was previously saved using the joblib file.

The result is returned in the form of a two-dimensional array:

3. Model deployment within ProSimPlus

23

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

A ProSimPlus test file utilizing this component is also available, named
"SimpleExample.pmp3".

………

dim SimpleExample

Sub OnSimulationStart()

set SimpleExample = createobject("ProSim.SimpleExampleModel")

End Sub

………

In summary, the script performs the following actions: it creates an instance
to obtain the ProgID of the class, retrieves the properties of the current
input, incorporates the process parameters (inputs), generates the output
streams, and retrieves the results returned by the training model.

It’s necessary to include the remaining process
parameters (inputs):

Process inputs

Extract of the script:

3. Model deployment within ProSimPlus

Feed WS
VBS

Surrogate Model

C1_Model

C6_Model

C4_Model

24

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

The final step consists of simulating the process using the surrogate
model we have built. To achieve this:

 Open the file directory:

 The command prompt window opens.

Run the program with the command:

python SimpleExampleModel.py --register

 Run the full simulation.

Click on the bar address and type: cmd

You only need to perform this step once.
This step is explained in detail in the python file: "SimpleExampleModel.py"

3. Model deployment within ProSimPlus

25

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Simulation with ProSimPlus

Example of the result:

3. Model deployment within ProSimPlus

Feed WS
VBS

Surrogate Model

C1_Model

C6_Model

C4_Model

Surrogate Model

26

©
 2

0
2
4
 F

iv
e
s

P
ro

S
im

S
.A

.S
.

-
A

ll
ri
g
h
ts

 r
e
se

rv
e
d
.

Fives ProSim S.A.S.

51, rue Ampère

Immeuble Stratège A

F-31670 Labège

France

Tel: +33 (0) 5 62 88 24 30

ProSim, Inc.

325 Chestnut Street,

Suite 800

Philadelphia, PA 19106

USA

Tel: +1 215 600 3759

www.fives-prosim.com
fives-prosim.info@fivesgroup.com

