



| EXAMPLE PURPOSE                                                                                                  |        |      |
|------------------------------------------------------------------------------------------------------------------|--------|------|
| This example illustrates the simulation of a crude oil atmospheric distillation unit with a preflash ProSimPlus. | column | with |

| Access | Free-Internet | Restricted to clients | Restricted | Confidential |
|--------|---------------|-----------------------|------------|--------------|
|--------|---------------|-----------------------|------------|--------------|

| CORRESPONDING PROSIMPLUS FILE | PSPS_EX_EN-Atmospheric-Distillation-with-Preflash.pmp3 |
|-------------------------------|--------------------------------------------------------|
|-------------------------------|--------------------------------------------------------|

Il est rappelé au lecteur que ce cas d'utilisation est un exemple et ne doit pas être utilisé à d'autres fins. Bien que cet exemple soit basé sur un cas réel il ne doit pas être considéré comme un modèle de ce type de procédé et les données utilisées ne sont pas toujours les plus exactes disponibles. Fives ProSim ne pourra en aucun cas être tenu pour responsable de l'application qui pourra être faite des calculs basés sur cet exemple.

Energy

**Fives ProSim** 

Siège social : Immeuble Stratège A - 51 rue Ampère - 31670 Labège - FRANCE Tél. : +33 (0)5 62 88 24 30 S.A.S. au capital de 147 800 € - 350 476 487 R.C.S. Toulouse - Siret 350 476 487 00037 - APE 5829C - N° TVA FR 10 350 476 487 www.fivesgroup.com / <u>www.fives-prosim.com</u>

# TABLE OF CONTENTS

| 1. Pro  | DCESS MODELING           | 3  |
|---------|--------------------------|----|
| 1.1.    | Process presentation     | 3  |
| 1.2.    | Process flowsheet        | 3  |
| 1.3.    | Compounds                | 4  |
| 1.4.    | Thermodynamic model      | 9  |
| 1.5.    | Operating conditions     | 9  |
| 1.5.    | 1. Feeds                 | 9  |
| 1.5.2   | 2. Preflash column C1    | 10 |
| 1.5.3   | 3. Side stripper C2      | 11 |
| 1.5.4   | 4. Main column C3        | 11 |
| 1.5.    | 5. Side stripper C4      | 12 |
| 1.5.0   | 6. Side stripper C5      | 13 |
| 1.5.7   | 7. Numerical parameters  | 13 |
| 2. Res  | SULTS                    | 13 |
| 2.1.    | Mass and energy balances | 13 |
| 2.2.    | Process Performances     | 15 |
| 2.3.    | Column profiles          | 18 |
| Referei | NCES                     | 25 |

## **1. PROCESS MODELING**

## 1.1. Process presentation

The distillation system consists of a preflash column coupled with a side stripper and of a main column coupled with two side strippers. These columns have got a decanter and a total condenser. The liquid streams that feed this two main columns are pre-heated with furnaces: these furnaces are simulated by a heating on the column feed stages.

The input data of this problem is available in [SIM83].

## 1.2. <u>Process flowsheet</u>



## 1.3. Compounds

The crude oil to be processed is made of 32 compounds: 3 light-ends (propane, isobutane, n-butane) and 29 pseudo-compounds. Water is also used for the stripping vapor in this process.

The pseudo-compounds creation service is available in the thermodynamic calculator editor as illustrated below.

| CALCULATOR             | This   | window helps you to define | the context of your thermodynamic calculator |         |                                                     |
|------------------------|--------|----------------------------|----------------------------------------------|---------|-----------------------------------------------------|
| TLE                    |        |                            | BINARIES PARAMETERS                          |         |                                                     |
| i Open                 |        |                            |                                              |         |                                                     |
| Save as                | #      | IUPAC Name                 | Registry Cas Number                          | <b></b> | COMPOUNDS                                           |
| u <b>a</b>             | 1      | WATER                      | 7732-18-5                                    |         |                                                     |
| ACKAGE                 | - 🛨 📫  | PROPANE                    | 74-98-6                                      |         | FILE A                                              |
|                        | 5      | ISOBUTANE<br>n-BUTANE      | 75-28-5<br>106-97-8                          |         | i Open                                              |
| SERVICES               | - 🔶 📳  | NBP-276(K)                 | 106-97-8                                     |         | Save as                                             |
| 📓 Calculate            | 5      | NBP-304(K)                 |                                              |         |                                                     |
| Export as a PSF file   | 7      | NBP-318(K)                 |                                              |         | Publish                                             |
| 2                      |        | NBP-333(K)                 |                                              |         |                                                     |
| 🗠 Diagrams             | 9      | NBP-346(K)                 |                                              |         | РАСКАБЕ ———— 🔻                                      |
| 🔀 Residue              | 10     | NBP-360(K)                 |                                              |         | ЕДП ———— 🔺                                          |
|                        | 11     | NBP-373(K)                 |                                              |         |                                                     |
| 🕹 Export as a PVT file | 12     | NBP-387(K)                 |                                              |         | Select compounds                                    |
| Stream                 | 13     | NBP-401(K)                 | Pseudo-compounds                             |         | 📓 Edit this compound                                |
| 🔀 Sigma profiles       | 14     | NBP-415(K)                 | creation service                             |         | Add a new compound                                  |
| Sigma promes           | 15     | NBP-429(K)                 | creation service                             |         |                                                     |
|                        | 16     | NBP-443(K)                 |                                              |         | 🐨 Remove all the compounds                          |
| MODIFICATIONS          | - 🛨 17 | NBP-457(K)                 |                                              |         | Clone this compound                                 |
|                        | 18     | NBP-471(K)                 |                                              |         |                                                     |
| CONFIGURATION          | - 🔺 19 | NBP-485(K)                 |                                              |         | X Delete the selection                              |
| Name                   | 20     | NBP-498(K)                 |                                              |         |                                                     |
| [New calculator]       | 21     | NBP-512(K)                 |                                              |         | SERVICES — A                                        |
| Comments               | 22     | NBP-526(K)                 |                                              |         | Create a pseudo-compound                            |
|                        | 23     | NBP-540(K)                 |                                              |         | <ul> <li>Temperature dependent propertie</li> </ul> |
| ·                      | 24     | NBP-554(K)                 |                                              |         |                                                     |
| Calculator type        | 25     | NBP-575(K)                 |                                              |         | Editor array                                        |
|                        | 26     | NBP-603(K)                 |                                              |         | Compare with the original                           |
| Native                 | ▼ 27   | NBP-629(K)                 |                                              |         |                                                     |
| Show the expert mode   | 28     | NBP-658(K)                 |                                              |         | Compare the compounds                               |
|                        | 29     | NBP-699(K)                 |                                              |         |                                                     |
|                        | 30     | NBP-754(K)                 |                                              |         | ORDER A                                             |
|                        | 31     | NBP-810(K)                 |                                              |         | Move this compound up                               |
|                        | 32     | NBP-865(K)                 |                                              |         | Maya this compound days                             |

The pseudo-compounds are generated using the following crude oil properties:

- the mean API gravity,
- the TPB at 760 mmHg,
- the API gravity curve,
- the lights volume composition.

The required data are provided in the following screen shot:

| elect the source curve type: TBP at 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60 mmHg                             |                            |                            |                      |                                |                 | •                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------|----------------------------|----------------------|--------------------------------|-----------------|--------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                            | Mea                        | n API gravity        |                                |                 |                                      |
| DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35,0000                             |                            |                            |                      |                                |                 |                                      |
| Copy data to clipboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                            |                            |                      |                                |                 |                                      |
| Paste data from clipboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                            |                            | 1                    |                                |                 |                                      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume percent distil               |                            | tures                      | Volume percent di    | istillated                     | -               | vity data cur                        |
| Insert a new line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,83000                             | 98 °F                      |                            | 12,0000              |                                | 66,7000         |                                      |
| 🛐 Delete the current line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,00000                             | 125 °F                     |                            | 19,0000              |                                | 55,3000         |                                      |
| 🔀 Draw graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,0000 20,0000                     | 167 °F<br>227 °F           |                            | 40,0000 62,0000      |                                | 37,6000 27,0000 |                                      |
| - · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30,0000                             | 291 °F                     |                            | 82,0000              |                                | 19,0000         |                                      |
| OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40,0000                             | 370 °F                     |                            | 02,0000              |                                | 10,0000         |                                      |
| Mean API gravity 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,0000                             | 460 °F                     |                            |                      |                                |                 |                                      |
| and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60,0000                             | 552 °F                     |                            |                      |                                |                 |                                      |
| API gravity data curve 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70,0000                             | 643 °F                     |                            |                      |                                |                 |                                      |
| INITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80,0000                             | 799 °F                     |                            | ]                    |                                |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90,0000                             | 1023 °F                    |                            |                      |                                |                 |                                      |
| Temperature °F 🛛 🔻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100,000                             | 1440 °F                    |                            |                      |                                |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                            |                            |                      |                                |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                            |                            |                      |                                |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                            |                            |                      |                                |                 |                                      |
| Light ends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                            |                            |                      |                                |                 |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | Bubble temp. (K)           |                            | cular weight (g/mol) |                                | / (g/cm3)       | Volume %                             |
| Data 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER                               | 373,15                     | 18,015                     | 53                   | 0,998997                       | / (g/cm3)       | Volume %                             |
| pata 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER PROPANE                       | 373,15<br>231,11           | 18,015<br>44,095           | 53                   | 0,998997<br>0,5057             | r (g/cm3)       | Volume 9<br>0<br>0,18                |
| lata 🔺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata Copy data to clipboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11           | 18,015<br>44,095           | 53<br>56<br>22       | 0,998997<br>0,5057             | r (g/cm3)<br>7  | Volume %<br>0<br>0,18                |
| Data A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Data Copy data to clipboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| ata A for a clipboard fo | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| ata Copy data to clipboard Paste data from clipboard omposition type Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| ata Copy data to clipboard Paste data from clipboard omposition type Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| ata Copy data to clipboard Paste data from clipboard omposition type Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| ata Copy data to clipboard Paste data from clipboard omposition type Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume 9<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Pata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | r (g/cm3)<br>7  | Volume %<br>0<br>0,18<br>0,3         |
| Paste data from clipboard Composition type  Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WATER :<br>PROPANE :<br>ISOBUTANE : | 373,15<br>231,11<br>261,43 | 18,015<br>44,095<br>58,122 | 53<br>56<br>22       | 0,998997<br>0,5057<br>0,563246 | γ (g/cm3)       | Volume %<br>0<br>0,18<br>0,3<br>0,69 |

The distillation curve is cut as follows: 4 compounds between 50 and 150 °F, 16 compounds between 150 and 550 °F, 4 compounds between 550 and 750 °F and 5 compounds between 750 and 1250 °F.

| Options      |               |                             |           |
|--------------|---------------|-----------------------------|-----------|
| Intervals Co | nversions     |                             |           |
|              | Temperature i | ntervals for distillation ( | cuts      |
| Values are   | expressed in: | °F ▼                        |           |
| 📄 Сору       | Paste         | 💱 Reset                     |           |
| T Min.       | T Max.        | Number of compou            | Delta T 🔺 |
| 50           | 150           | 4                           | 25        |
| 150          | 550           | 16                          | 25        |
| 550          | 750           | 4                           | 50        |
| 750          | 1250          | 5                           | 100       |
|              |               |                             |           |
|              |               |                             |           |
|              |               |                             |           |
|              |               |                             |           |
|              |               | Ok                          | Cancel    |

The normal boiling points of the compounds generated with Simulis are gathered in the following table. The minimal temperature of the first interval is taken equal to the heaviest light normal boiling point (here 31 °F for the n-butane).

| Compound   | Normal boiling point (°F) |
|------------|---------------------------|
| NBP-276(K) | 37                        |
| NBP-304(K) | 88                        |
| NBP-318(K) | 114                       |
| NBP-333(K) | 139                       |
| NBP-346(K) | 163                       |
| NBP-360(K) | 187                       |
| NBP-373(K) | 212                       |
| NBP-387(K) | 237                       |
| NBP-401(K) | 262                       |
| NBP-415(K) | 287                       |
| NBP-429(K) | 312                       |
| NBP-443(K) | 337                       |
| NBP-457(K) | 362                       |
| NBP-471(K) | 387                       |
| NBP-485(K) | 412                       |
| NBP-498(K) | 437                       |
| NBP-512(K) | 462                       |
| NBP-526(K) | 487                       |
| NBP-540(K) | 513                       |
| NBP-554(K) | 538                       |
| NBP-575(K) | 575                       |
| NBP-603(K) | 625                       |
| NBP-629(K) | 673                       |
| NBP-658(K) | 725                       |
| NBP-699(K) | 799                       |
| NBP-754(K) | 898                       |
| NBP-810(K) | 999                       |
| NBP-865(K) | 1098                      |
| NBP-969(K) | 1284                      |

The obtained molar composition of the crude oil is presented in the table below. The molar mass calculated is equal to 163.42 g/mol.

| 1 | Compound   | Molar composition |
|---|------------|-------------------|
|   | WATER      | 0                 |
|   | PROPANE    | 0.00397           |
|   | ISOBUTANE  | 0.00560           |
|   | n-BUTANE   | 0.01335           |
|   | NBP-276(K) | 0.03596           |
|   | NBP-304(K) | 0.01465           |
|   | NBP-318(K) | 0.01788           |
|   | NBP-333(K) | 0.04094           |
|   | NBP-346(K) | 0.05631           |
|   | NBP-360(K) | 0.06382           |
|   | NBP-373(K) | 0.06105           |
|   | NBP-387(K) | 0.05699           |
|   | NBP-401(K) | 0.05380           |
|   | NBP-415(K) | 0.04910           |
|   | NBP-429(K) | 0.04272           |
|   | NBP-443(K) | 0.03763           |
|   | NBP-457(K) | 0.03378           |
|   | NBP-471(K) | 0.03159           |
|   | NBP-485(K) | 0.03000           |
|   | NBP-498(K) | 0.02840           |
|   | NBP-512(K) | 0.02679           |
|   | NBP-526(K) | 0.02583           |
|   | NBP-540(K) | 0.02479           |
|   | NBP-554(K) | 0.02383           |
|   | NBP-575(K) | 0.04544           |
|   | NBP-603(K) | 0.04160           |
|   | NBP-629(K) | 0.02584           |
|   | NBP-658(K) | 0.01881           |
|   | NBP-699(K) | 0.03108           |
|   | NBP-754(K) | 0.02114           |
|   | NBP-810(K) | 0.01463           |
|   | NBP-865(K) | 0.00962           |
|   | NBP-969(K) | 0.01282           |

### 1.4. Thermodynamic model

The studied process deals with mixtures of water (with molar ratio less than 50% when not pure) and hydrocarbons. Thus, a Peng-Robinson (PR) equation of state with the Water-Hydrocarbons model has been chosen. The liquid molar volume calculation uses the "Ideal mixture" model.

### 1.5. Operating conditions

### 1.5.1. Feeds

The aim is to process 25 000 bbl/d of crude oil at standard conditions (60 °F and 1 bar). This corresponds to 28 510 bbld/d (1 187.9 bbl/h) in the process operating conditions. The crude oil is at 300 °F and 54.636 psi.

The vapor flowrates that feed the main columns and side strippers are the following:

- Stream "Steam 9": 3 000 lb/h (T = 314.3074 °F ; P = 55 psi)
- Stream "Steam 10": 900 lb/h (T = 313.8679 °F ; P = 54 psi)
- Stream "Steam 19": 1 500 lb/h (T = 300.5648 °F ; P = 25 psi)
- Stream "Steam 20": 650 lb/h (T = 300.0882 °F ; P = 24 psi)
- Stream "Steam 21": 600 lb/h (T = 300.0879 °F ; P = 24 psi)

### 1.5.2. Preflash column C1

### 1.5.2.1.Parameters

- Characteristics:
  - Stripper with decanter and total condenser subcooled to 100 °F
  - Number of theoretical stages: 13
  - o Operating mode specification: reflux flowrate, initial value: 3 000 lbmol/h
  - Intermediate reboiler at stage 11 (in order to simulate the feed heating in the furnace), initial value: 30 MBtu/h
  - Pressure profile: 48 psi at the condenser, 53 psi at stage 2, 55 psi at the bottom
- Feeds:
  - "Crude oil" at stage 11
  - Stream 7 at stage 7 (C2 side stripper head stream)
- Sidestream:
  - Stream 6 at stage 8 (stream feeding the side stripper C2) , initial value: 100 lbmol/h
- Pumparound:
  - From stage 8 to stage 6 (liquid phase)
  - Flowrate: 5 200 bbl/d (216.667 bbl/h, standard conditions)
  - Power: 5 MBtu/h (cooling)
    - 1.5.2.2. Objectives / Constraints
- Bottom liquid product flowrate: 16 800 bbl/d (700 bbl/h, standard conditions)

Adjusted variable: reflux flowrate

- Overflash: 400 bbl/d (16.667 bbl/h, standard conditions)

In ProSimPlus, the overflash is not specified in flowrate but in flowrate ratio (the liquid flowrate arriving at the feed stage divided by the flashed feed flowrate at the column pressure) at the feed stage. The fixed constraint in the simulation is here the liquid flowrate at stage 10 and is equal to 16.667 bbl/h (standard conditions).

Adjusted variable: stage 11 intermediate heat duty

### 1.5.2.3. Initializations

- Head composition in molar fraction: 0.1 for the 10 lightest hydrocarbons
- Bottom composition in molar fraction: 0.05 for the 20 heaviest hydrocarbons

### 1.5.3. Side stripper C2

### 1.5.3.1.Parameters

- Characteristics:
  - o Absorber
  - Number of theoretical stages: 2
  - Pressure: 54 psi

### 1.5.3.2. Objectives / Constraints

Bottom liquid product flowrate (Naphtha): 5 420 bbl/d (225.833 bbl/h, standard conditions)
 Adjusted variable: feed flowrate (stream 6)

### 1.5.4. Main column C3

### 1.5.4.1.Parameters

- Characteristics:
  - Stripper with decanter and total condenser subcooled to 100 °F
  - Number of theoretical stages: 16
  - Operating mode specification: reflux flowrate
  - Stage 14 intermediate reboiler (to simulate the heating of the feed in the furnace)
  - Pressure profile: 20 psi at the condenser, 23 psi at stage 2, 25 psi at the bottom

### Feeds:

- Stream 8 at stage 14 (bottom liquid product stream of the preflash column)
- Stream 14 at stage 7 (head stream of the side stripper C4)
- Stream 17 at stage 11 (head stream of the side stripper C5)

- Sidestreams:
  - Stream 13 at stage 8 (stream feeding the side stripper C4)
  - Stream 16 at stage 12 (stream feeding the side stripper C5)
- Pumparound:
  - From stage 12 to stage 10 (liquid phase)
  - Flowrate: 4 700 bbl/d (195.833 bbl/h, standard conditions)
  - Power: 5 MBtu/h (cooling)

### 1.5.4.2. Objectives / Constraints

- Bottom liquid product flowrate: 7 335 bbl/d (305.625 bbl/h, standard conditions)

Adjusted variable: reflux flowrate

- Overflash of 0.05 (standard conditions)

Adjusted variable: stage 4 intermediate heating

The overflash in volume is defined as the liquid volume flowrate entering the feed stage divided by the feed volume flowrate (standard conditions).

- Stage 9 liquid flowrate: 200.2 bbl/h (standard conditions)

Adjusted variable: pumparound reboiler heat duty

### 1.5.4.3. Initializations

- Stage 8 sidestream liquid flowrate: 100 lbmol/h (this flowrate is adjusted by a specification of the side stripper C4).
- Stage 12 sidestream liquid flowrate: 100 lbmol/h (this flowrate is adjusted by a specification of the side stripper C5).
- Reflux flowrate: 1 000 lbmol/h
- Stage 14 intermediate reboiler heat duty: 40 MBtu/h (this heat duty is adjusted by the overflash specification)
- Head composition in molar fraction: 0.1 for the 11<sup>th</sup> to the 20<sup>th</sup> lightest hydrocarbons
- Bottom composition in molar fraction: 0.1 for the heaviest 10 hydrocarbons

### 1.5.5. Side stripper C4

### 1.5.5.1.Parameters

- Characteristics:

- o Absorber
- o Number of theoretical stages: 2
- o Pressure: 24 psi

### 1.5.5.2. Objectives / Constraints

Bottom liquid product flowrate (Jet fuel): 3 780 bbl/d (157.5 bbl/h, standard conditions)
 Adjusted variable: feed flowrate (stream 13)

### 1.5.6. Side stripper C5

### 1.5.6.1.Parameters

- Characteristics:
  - o Absorber
  - Number of theoretical stages: 2
  - Pressure: 24 psi

### 1.5.6.2. Objectives / Constraints

- Bottom liquid product flowrate (Diesel fuel): 3 765 bbl/d (156.875 bbl/h, standard conditions

Adjusted variable: feed flowrate (stream 16)

### 1.5.7. Numerical parameters

The default numerical parameters are used for all the unit operations.

### 2. RESULTS

### 2.1. Mass and energy balances

This document only presents the most relevant stream results. In ProSimPlus, mass and energy balances are provided for every stream. Results are also available at the unit operation level (result tab in the configuration window).

Inlet streams:

| Streams        |         | 1                  | 9                  | 10               | 19             | 20               | 21               |
|----------------|---------|--------------------|--------------------|------------------|----------------|------------------|------------------|
| From           |         | Crude Oil          | Steam 9            | Steam 10         | Steam 19       | Steam 20         | Steam 21         |
| То             |         | Preflash Column C1 | Preflash Column C1 | Side Stripper C2 | Main Column C3 | Side Stripper C5 | Side Stripper C4 |
| Total flow     | lbmol/h | 1850.8             | 166.5              | 50.0             | 83.3           | 36.1             | 33.3             |
| Mole fractions |         | 0                  | 0                  | 0                | 0              | 0                | 0                |
| WATER          |         | 0                  | 1                  | 1                | 1              | 1                | 1                |
| PROPANE        |         | 0.00397            | 0                  | 0                | 0              | 0                | 0                |
| ISOBUTANE      |         | 0.00560            | 0                  | 0                | 0              | 0                | 0                |
| n-BUTANE       |         | 0.01335            | 0                  | 0                | 0              | 0                | 0                |
| NBP-276(K)     |         | 0.03596            | 0                  | 0                | 0              | 0                | 0                |
| NBP-304(K)     |         | 0.01465            | 0                  | 0                | 0              | 0                | 0                |
| NBP-318(K)     |         | 0.01788            | 0                  | 0                | 0              | 0                | 0                |
| NBP-333(K)     |         | 0.04094            | 0                  | 0                | 0              | 0                | 0                |
| NBP-346(K)     |         | 0.05631            | 0                  | 0                | 0              | 0                | 0                |
| NBP-360(K)     |         | 0.06382            | 0                  | 0                | 0              | 0                | 0                |
| NBP-373(K)     |         | 0.06105            | 0                  | 0                | 0              | 0                | 0                |
| NBP-387(K)     |         | 0.05699            | 0                  | 0                | 0              | 0                | 0                |
| NBP-401(K)     |         | 0.05380            | 0                  | 0                | 0              | 0                | 0                |
| NBP-415(K)     |         | 0.04910            | 0                  | 0                | 0              | 0                | 0                |
| NBP-429(K)     |         | 0.04272            | 0                  | 0                | 0              | 0                | 0                |
| NBP-443(K)     |         | 0.03763            | 0                  | 0                | 0              | 0                | 0                |
| NBP-457(K)     |         | 0.03378            | 0                  | 0                | 0              | 0                | 0                |
| NBP-471(K)     |         | 0.03159            | 0                  | 0                | 0              | 0                | 0                |
| NBP-485(K)     |         | 0.03000            | 0                  | 0                | 0              | 0                | 0                |
| NBP-498(K)     |         | 0.02844            | 0                  | 0                | 0              | 0                | 0                |
| NBP-512(K)     |         | 0.02698            | 0                  | 0                | 0              | 0                | 0                |
| NBP-526(K)     |         | 0.02583            | 0                  | 0                | 0              | 0                | 0                |
| NBP-540(K)     |         | 0.02479            | 0                  | 0                | 0              | 0                | 0                |
| NBP-554(K)     |         | 0.02383            | 0                  | 0                | 0              | 0                | 0                |
| NBP-575(K)     |         | 0.04544            | 0                  | 0                | 0              | 0                | 0                |
| NBP-603(K)     |         | 0.04160            | 0                  | 0                | 0              | 0                | 0                |
| NBP-629(K)     |         | 0.02584            | 0                  | 0                | 0              | 0                | 0                |
| NBP-658(K)     |         | 0.01881            | 0                  | 0                | 0              | 0                | 0                |
| NBP-699(K)     |         | 0.03108            | 0                  | 0                | 0              | 0                | 0                |
| NBP-754(K)     |         | 0.02114            | 0                  | 0                | 0              | 0                | 0                |
| NBP-810(K)     |         | 0.01463            | 0                  | 0                | 0              | 0                | 0                |
| NBP-865(K)     |         | 0.00962            | 0                  | 0                | 0              | 0                | 0                |
| NBP-969(K)     |         | 0.01282            | 0                  | 0                | 0              | 0                | 0                |
| Physical state |         | Liquid             | Vapor              | Vapor            | Vapor          | Vapor            | Vapor            |
| Temperature    | °F      | 300.0              | 314.3              | 313.9            | 300.6          | 300.1            | 300.1            |
| Pressure       | psi     | 54.6               | 55.0               | 54.0             | 25.0           | 24.0             | 24.0             |
| Molar weight   | g/mol   | 163.42             | 18.02              | 18.02            | 18.02          | 18.02            | 18.02            |

#### Outlet streams:

| Streams        |         | 4                  | 5                | 11             | 12               | 15               | 18             | Water1             | Water2         |
|----------------|---------|--------------------|------------------|----------------|------------------|------------------|----------------|--------------------|----------------|
| From           |         | Preflash Column C1 | Side Stripper C2 | Main Column C3 | Side Stripper C4 | Side Stripper C5 | Main Column C3 | Preflash Column C1 | Main Column C3 |
| То             |         | Gasoline           | Naphtha          | Heavy Naphtha  | Jet fuel         | Diesel fuel      | Topped Crude   | Water1             | Water2         |
| Total flow     | lbmol/h | 300.0              | 568.2            | 196.3          | 300.3            | 231.9            | 268.2          | 191.1              | 163.9          |
| Mole fractions |         | 0                  | 0                | 0              | 0                | 0                | 0              | 0                  | 0              |
| WATER          |         | 0.00128            | 0.01533          | 0.00128        | 0.00589          | 0.00545          | 0.00659        | 1                  | 1              |
| PROPANE        |         | 0.02440            | 0.00004          | 0.00004        | 1E-09            | 3E-10            | 2E-10          | 0                  | 0              |
| ISOBUTANE      |         | 0.03398            | 0.00022          | 0.00020        | 2E-08            | 4E-09            | 2E-09          | 0                  | 0              |
| n-BUTANE       |         | 0.08034            | 0.00082          | 0.00071        | 9E-08            | 2E-08            | 7E-09          | 0                  | 0              |
| NBP-276(K)     |         | 0.21554            | 0.00257          | 0.00218        | 3E-07            | 7E-08            | 3E-08          | 0                  | 0              |
| NBP-304(K)     |         | 0.08339            | 0.00291          | 0.00229        | 1E-06            | 2E-07            | 5E-08          | 0                  | 0              |
| NBP-318(K)     |         | 0.09572            | 0.00610          | 0.00463        | 4E-06            | 5E-07            | 2E-07          | 0                  | 0              |
| NBP-333(K)     |         | 0.19101            | 0.02614          | 0.01838        | 0.00003          | 4E-06            | 1E-06          | 0                  | 0              |
| NBP-346(K)     |         | 0.18266            | 0.07227          | 0.04234        | 0.00013          | 0.00002          | 4E-06          | 0                  | 0              |
| NBP-360(K)     |         | 0.07692            | 0.14117          | 0.07471        | 0.00044          | 0.00005          | 0.00001        | 0                  | 0              |
| NBP-373(K)     |         | 0.01301            | 0.15560          | 0.10339        | 0.00110          | 0.00012          | 0.00003        | 0                  | 0              |
| NBP-387(K)     |         | 0.00155            | 0.13800          | 0.13130        | 0.00244          | 0.00026          | 0.00006        | 0                  | 0              |
| NBP-401(K)     |         | 0.00017            | 0.11704          | 0.15934        | 0.00524          | 0.00054          | 0.00012        | 0                  | 0              |
| NBP-415(K)     |         | 0.00002            | 0.09322          | 0.17475        | 0.01097          | 0.00103          | 0.00021        | 0                  | 0              |
| NBP-429(K)     |         | 0.00000            | 0.06887          | 0.16138        | 0.02575          | 0.00179          | 0.00036        | 0                  | 0              |
| NBP-443(K)     |         | 2E-07              | 0.05006          | 0.09774        | 0.07045          | 0.00301          | 0.00060        | 0                  | 0              |
| NBP-457(K)     |         | 1E-08              | 0.03597          | 0.02237        | 0.12076          | 0.00500          | 0.00098        | 0                  | 0              |
| NBP-471(K)     |         | 1E-09              | 0.02607          | 0.00268        | 0.13570          | 0.00836          | 0.00163        | 0                  | 0              |
| NBP-485(K)     |         | 1E-10              | 0.01847          | 0.00026        | 0.13666          | 0.01389          | 0.00266        | 0                  | 0              |
| NBP-498(K)     |         | 0                  | 0.01246          | 0.00002        | 0.13036          | 0.02277          | 0.00421        | 0                  | 0              |
| NBP-512(K)     |         | 0                  | 0.00788          | 2E-06          | 0.11702          | 0.03700          | 0.00648        | 0                  | 0              |
| NBP-526(K)     |         | 0                  | 0.00461          | 1E-07          | 0.09631          | 0.05888          | 0.00973        | 0                  | 0              |
| NBP-540(K)     |         | 0                  | 0.00243          | 6E-09          | 0.06854          | 0.08683          | 0.01413        | 0                  | 0              |
| NBP-554(K)     |         | 0                  | 0.00113          | 2E-10          | 0.04042          | 0.11221          | 0.01981        | 0                  | 0              |
| NBP-575(K)     |         | 0                  | 0.00057          | 0              | 0.02683          | 0.25482          | 0.06205        | 0                  | 0              |
| NBP-603(K)     |         | 0                  | 0.00006          | 0              | 0.00444          | 0.21349          | 0.09741        | 0                  | 0              |
| NBP-629(K)     |         | 0                  | 4E-06            | 0              | 0.00047          | 0.10096          | 0.09053        | 0                  | 0              |
| NBP-658(K)     |         | 0                  | 2E-07            | 0              | 0.00004          | 0.04556          | 0.09037        | 0                  | 0              |
| NBP-699(K)     |         | 0                  | 6E-09            | 0              | 2E-06            | 0.02576          | 0.19221        | 0                  | 0              |
| NBP-754(K)     |         | 0                  | 0                | 0              | 6E-09            | 0.00209          | 0.14412        | 0                  | 0              |
| NBP-810(K)     |         | 0                  | 0                | 0              | 0                | 0.00009          | 0.10088        | 0                  | 0              |
| NBP-865(K)     |         | 0                  | 0                | 0              | 0                | 3E-06            | 0.06639        | 0                  | 0              |
| NBP-969(K)     |         | 0                  | 0                | 0              | 0                | 1E-08            | 0.08846        | 0                  | 0              |
| Physical state |         | Liquid             | Liquid           | Liquid         | Liquid           | Liquid           | Liquid         | Liquid             | Liquid         |
| Temperature    | °F      | 100.0              | 268.7            | 100.0          | 382.3            | 509.4            | 601.3          | 100.0              | 100.0          |
| Pressure       | psi     | 48.0               | 54.0             | 20.0           | 24.0             | 24.0             | 25.0           | 48.0               | 20.0           |
| Molar weight   | g/mol   | 73.88              | 107.82           | 110.97         | 156.96           | 212.48           | 376.96         | 18.02              | 18.02          |

### 2.2. Process Performances

With ProSimPlus, it is possible to generate the TBP/ASTM curves of material streams. To do so, two ways are available:

- Select the option to plot the TBP/ASTM curves of all the material streams of the process during the next simulation in the tab "Flowsheet" as shown in the following figure:

| File Edit Configuration    | Flowsheet Tools Simulation Windows Help                  |   |                                   |
|----------------------------|----------------------------------------------------------|---|-----------------------------------|
| <b>▶ ┬_ ┬_ ≫</b> ↓         | Add an Equipment                                         | ۲ | 📓 📄 🔵 🔙 T 123                     |
| <b>.</b>                   | Connect                                                  | • |                                   |
| Library Tree view Properti | Reconnect streams                                        |   | [ 🔁 🔯 🔍 🔪 View name: 🕅            |
| 🌣 Feed / Outlet            | TBP/ASTM curves                                          | • | Select all the material streams   |
| × Absorbers                | Update stream links                                      |   | Deselect all the material streams |
| 🔆 2-phase distillation     | Clear all stream links                                   |   |                                   |
| × Strippers                | Initialize tear streams with the last simulation results |   |                                   |
|                            | Hide the information streams                             |   |                                   |
| 🔆 3-phase distillation     | Number streams automatically                             |   |                                   |
| Liquid-liquid extraction   | Update flowsheet tags value                              |   |                                   |

- Tick the "Calculate the TBP/ASTM curves for this stream" box in the configuration window of the material stream which TBP/ASTM curves have to be plotted during the next simulation as illustrated below:

| lame:<br>)esc:                                   | · [          |                   |          |            |          |              |         |           |   |  |
|--------------------------------------------------|--------------|-------------------|----------|------------|----------|--------------|---------|-----------|---|--|
| ldenti                                           | ificatio     | Parameters        | Report   | Notes      | TBP/A    | STM curves   | Advance | ed para 👎 | • |  |
|                                                  | 6            | Сору              |          | Paste      |          |              |         |           |   |  |
| ☑ Initialized stream                             |              |                   |          |            |          |              |         |           |   |  |
| Flowrates and fractions Temperature and Pressure |              |                   |          |            |          |              |         |           |   |  |
|                                                  | Flowrs       | ate specification |          | Partial n  | nace flo | wrates       |         | _         |   |  |
|                                                  |              | ne apecinication  |          | Faitial II | 1055 110 | Widles       |         | •         |   |  |
| Partial mass flowrates                           |              |                   |          |            |          |              |         |           |   |  |
|                                                  | Unit         | lb/h              |          | -          |          |              |         |           |   |  |
|                                                  | #            | Components        |          |            |          | Mass flow ra | ites    |           |   |  |
|                                                  | 1            | WATER             |          |            | 0        |              |         |           |   |  |
|                                                  | 2            | PROPANE           |          |            |          | 0            |         |           |   |  |
|                                                  | 3            | ISOBUTANE         |          |            |          | 0            |         |           |   |  |
|                                                  | 4            | n-BUTANE          |          |            | 0        |              |         |           |   |  |
|                                                  | 5            | 5 NBP-276(K)      |          |            |          | 0            |         |           |   |  |
|                                                  | 6 NBP-304(K) |                   |          |            |          | 0            |         |           |   |  |
|                                                  | 7            | NBP-318(K)        |          |            |          | 0            |         |           |   |  |
|                                                  | 8            | NBP-333(K)        |          |            |          | 0            |         |           |   |  |
| Humidity Not specified -                         |              |                   |          |            |          |              |         |           |   |  |
|                                                  |              |                   |          |            |          |              |         |           |   |  |
|                                                  |              |                   |          |            |          |              |         |           |   |  |
| Dat                                              | a link:      |                   |          |            |          |              |         |           |   |  |
|                                                  |              | te the TBP/AST    | Mieuryce | for this : | etreem   |              |         |           |   |  |
| V                                                | Calcula      | ite the TBP/AST   | m curves | for this : | stream   |              |         |           |   |  |

To reach this option the "Initialized stream" box has to be ticked and then unticked once the "Calculate the TBP/ASTM curves for this stream" box has been ticked.



The following figure shows on a same graph the TBP at 760 mmHg curve of the crude oil entering the preflash C1 column and the ones of the cuts obtained at the outlet of this column:

The following figure shows on a same graph the TBP at 760 mmHg curve of the stream 8 entering the main column C3 and the ones of the cuts obtained at the outlet of this column:



## 2.3. Column profiles

Profiles can be accessed after the simulation in each column configuration window, in the "Profiles" tab. Double clicking on the profile will generate the corresponding graph. It is important to note that, in ProSimPlus, the first stage corresponds to the top stage and the last stage to the bottom stage (respectively the condenser and the reboiler in the case of a distillation column).

| Stripper with decanter (total condenser)                                                                                                        | ) (\$COLD)                                                                                |           |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Name: Preflash Column C1<br>Desc:                                                                                                               |                                                                                           |           |  |  |  |  |  |  |
| Identification Parameters Scripts Report                                                                                                        | Streams Profiles Notes Advanced parameters                                                |           |  |  |  |  |  |  |
| name                                                                                                                                            | Description                                                                               |           |  |  |  |  |  |  |
| Preflash Column C1 - Temperature profile Temperature profile in the column Preflash Column C1 - Pressure profile Pressure profile in the column |                                                                                           |           |  |  |  |  |  |  |
| Preflash Column C1 - Liquid mole-fractions                                                                                                      | Liquid mole-fractions profile in the column                                               |           |  |  |  |  |  |  |
| Preflash Column C1 - Vapor mole-fractions                                                                                                       | Vapor mole-fractions profile in the column                                                |           |  |  |  |  |  |  |
| Preflash Column C1 - Liquid mass-fractions<br>Preflash Column C1 - Vapor mass-fractions                                                         | Liquid mass-fractions profile in the column<br>Vapor mass-fractions profile in the column |           |  |  |  |  |  |  |
| Preflash Column C1 - Enthalpies                                                                                                                 | Enthalpies profile in the column                                                          |           |  |  |  |  |  |  |
| Preflash Column C1 - Molar flowrates                                                                                                            | Molar flowrates profile in the column                                                     |           |  |  |  |  |  |  |
| Preflash Column C1 - Mass flowrates                                                                                                             | Mass flowrates profile in the column                                                      |           |  |  |  |  |  |  |
| Preflash Column C1 - Volume flowrates                                                                                                           | Volume flowrates profile in the column                                                    |           |  |  |  |  |  |  |
|                                                                                                                                                 |                                                                                           |           |  |  |  |  |  |  |
|                                                                                                                                                 |                                                                                           |           |  |  |  |  |  |  |
|                                                                                                                                                 |                                                                                           |           |  |  |  |  |  |  |
|                                                                                                                                                 |                                                                                           |           |  |  |  |  |  |  |
|                                                                                                                                                 |                                                                                           |           |  |  |  |  |  |  |
|                                                                                                                                                 |                                                                                           |           |  |  |  |  |  |  |
| Plot Values                                                                                                                                     |                                                                                           |           |  |  |  |  |  |  |
|                                                                                                                                                 |                                                                                           | OK Cancel |  |  |  |  |  |  |

### Preflash column C1:







Side stripper C2:





Main column C3:







### Side stripper C4:





### Side stripper C5:





## REFERENCES

[SIM83] Simulation Sciences Inc., SimSci Manual, Revision 1 (1983)