

	EXAMPLE PURPOSE					
This examp ProSimPlus	ole presents an Integra s.	ated (Gasification Combined Cycle (I	GCC) based on co	al gasification using	
Access	Free-Internet		Restricted to clients	Restricted	Confidential	
Correst	PONDING PROSIMPLUS FI	LE	PSPS_EX_EN–IGCC-Plant.pmp3			

Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. Fives ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example.

Energy

Fives ProSim

Siège social : Immeuble Stratège A - 51 rue Ampère - 31670 Labège - FRANCE Tél. : +33 (0)5 62 88 24 30 S.A.S. au capital de 147 800 € - 350 476 487 R.C.S. Toulouse - Siret 350 476 487 00037 - APE 5829C - N° TVA FR 10 350 476 487 www.fivesgroup.com / <u>www.fives-prosim.com</u>

TABLE OF CONTENTS

1. Pr	OCESS MODELING	3
1.1.	Process presentation	3
1.2.	Process flowsheet	4
1.3.	Compounds	4
1.3	.1. Coal ("Waste") compound	4
1.3	.1. Final compounds list	9
1.4.	Thermodynamic model	10
1.5.	Reactions	10
1.6.	Operating conditions of the "Gasification island" block	13
1.6	.1. Air Separation Unit (ASU)	13
1.6	2. Gasifier	17
1.6	.3. H2S Removal and Heat Recovery	34
1.6	.4. Gas Cleaning	37
1.6	.5. Saturator	39
1.7.	Operating conditions of the "Combined cycle" block	40
1.7	.1. Gas turbine	40
1.7	.2. Heat Recovery Steam Generator (HRSG)	41
1.7	.3. Steam turbines	43
2. Sin	IULATION RESULTS	46
2.1.	Results summary	46
2.2.	Net Power Output and Plant Efficiency	49
3. Re	FERENCES	51

1. PROCESS MODELING

1.1. Process presentation

This example presents the simulation of an Integrated Gasification Combined Cycle (IGCC) plant. This process is used to turn coal and/or other carbon-based fuels into synthesis gas (also named "syngas") by means of partial oxidation with air, oxygen or steam. The main inputs of the process are the air (as combustive) and the waste (as fuel). The coal (named "waste" in this example) is converted into syngas undergoing gasification and combustion reactions in the gasifier. The gasifier works at high pressure and with pure oxygen (separated with an Air Separation Unit, ASU).

Unlike coal combustion processes, gasification is performed with less oxygen requirement. Hence, the fuel gas obtained is composed mainly of carbon monoxide (CO) and hydrogen (H₂). The impurities are removed from the syngas prior to the power generation cycle. Some of these pollutants, such as sulfur (S), can be turned into re-usable byproducts through the "Claus" process.

With additional process equipment, a water-gas shift reaction can increase gasification efficiency and reduce carbon monoxide (CO) emissions by converting it to carbon dioxide (CO₂). The resulting carbon dioxide from the shift reaction can be separated, compressed, and stored through sequestration.

These first operations (coal preparation, gasification, gas cleaning) represents the "Gasification island" block of an IGCC plant.

Then the excess heat from the gasification and syngas fired generation is passed to a steam cycle, similar to a combined cycle gas turbine. This second block is also named "Combined cycle" block.

Block diagram of a typical IGCC plant

The input data and results of this example are based on different IGCC plants presented in [EDW07], [ENE17] and [NAY11].

1.2. Process flowsheet

The process flowsheet is divided in several blocks according to the process diagram shown in the previous section.

1.3. Compounds

1.3.1. Coal ("Waste") compound

The composition of the "Coal" ("Waste") is described below:

Element	Percentage (% wt)			
Ashes	7.24			
Carbon (C)	73.81			
Hydrogen (H)	4.88			
Nitrogen (N)	1.48			
Sulfur (S)	2.13			
Oxygen (O)	5.41			
Moisture (H ₂ O)	5.05			

Coal composition

Page: 5 / 51

Coal is a non-conventional solid and thus, the compound cannot be directly loaded from the DIPPR database embedded in Simulis Thermodynamics [ROW17]. The "Coal" ("Waste") has to be created as a new compound and its composition has to be input in a form suitable to ProSimPlus.

The waste is composed of 3 compounds following Simulis Thermodynamics terminology:

- > Waste : CHONS compound created as a new compound;
- Ashes : In this example the ashes have been considered as silicon dioxide (SiO₂). This compound is the most commonly found in nature ("coal") and well represent inerts of a waste stream (the critical properties (Tc, Pc, Zc, Vc) of this compound has been deleted in order to impose the solid state whatever the operating temperature of the system);
- > Water : the moisture.

The "Waste" (coal) composition of the CHONS compound is computed as below (cf. "Coal_compound.xlsx"):

Element	Percentage (% wt)
Carbon (C)	84.15
Hydrogen (H)	5.56
Nitrogen (N)	1.69
Sulfur (S)	2.43
Oxygen (O)	6.17

The "Waste" compound is created as a new compound in the calculator editor of Simulis Thermodynamics:

Thermodynamic calculator editor		— C	x c
CALCULATOR	This window helps you to define the context of your thermodynamic calculator		
FILE A	COMPOUNDS MODEL PARAMETERS CALCULATION DLL CALCULATION SCRIPT		
Save as	# IUPAC Name Registry Cas Number COM 1 Waste 55000-01-6 COM	POUNDS	
PACKAGE ——— 🔻	FILE		~
SERVICES 🔺	Save as		
Export as a PSF file	Publish		
Diagrams	PACKAGE		— -
Residue	EDIT		<u> </u>
Export as a PVT file	Select com	oounds	
Sigma profiles	→ Add a new	mpound compound	
	😈 Remove all	the compoun	ıds
	📑 Clone this	compound	
	Delete the	selection	

Note: The name of the new compound has been changed and a CAS number was associated to the new compound (55000-01-6).

Then, the "Waste" compound is modified using the scriptlet "Solid compound" (more details can be found in [NT172]). This scriptlet is accessible by a simple right click on the flowsheeting area of ProSimPlus.

Sheet properties	I.		
Scriptlets ►		Alcohol •	1
		Balances •	
		DTMin of the process	
	L	Economic evaluation •	
	L	Equipments list	
	L	HNO3	
	T	Miscellaneous •	
	V	Project management	
		Simulis 🕨 🕨	Compounds
		Stream properties	Solid compound
	8	Update the scriptlets list	
		Generate a scriplets description file	

The window below is displayed and the atomic elements are described:

Definition of solid compound atomic elements	\times
This scriptlet calculates the chemical formula and the LHV of a solid compound defined by its atomic mass compositions.	
Check the chemical elements existing in the compound C (Carbon) H (Hydrogen) O (Oxygen) N (Nitrogen) S (Sulfur)	
Inerts Fe (Iron) V (Vanadium) Cu (Copper) Ni (Nickel)	~
Ok Cancel	

In this example, only C, H, O, N, and S atomic elements are used.

The scriptlet "Solid compound" enables user to estimate the heat of combustion of a solid (Low Heating Value: LHV) unless the heat of combustion (LHV) is provided directly in one of the description windows of the scriptlet.

The number of carbon (C) atoms of the chemical formula of the waste is an input data of the scriptlet. This input data has no effect on mass simulation results (only molar results on the coal stream are different).

The composition and the flowrate of the coal are defined on a mass basis. Therefore, the number of carbon atoms defined in this scriptlet has no effect on the simulation results (molar results are meaningless).

Note: the stoichiometric coefficients changed following the number of carbons (C) (cf. 1.5 Reactions).

Results of the scriptlet with a number of carbon (C) atoms of 10 000:

Atom	Mass fraction (-)	Mole- fraction (-)	Chemical formula	Chemical formula (in equilibrium reactor)	Mw (g/mol)	DH0f (J/mol)	DG0f (J/mol)	LHV (kJ/kg)	HHV (kJ/kg)	Decomposition reaction in C,H2,O2,N,S	Sto. Coef.
С	0.84	0.535	10000	10000	142350	-4.413618E7	69414880	34189.7	35405.8	Compound	-1.00
Н	0.055	0.421	7872	7872						С	10000
0	0.062	0.0294	550	550						H2	3936
N	0.016	0.0088	165	165						O2	275
S	0.022	0.0053	99.7	100						N2	82.5
										S	99.7

Results of the scriptlet with a number of carbon (C) atoms of 1:

Atom	Mass fraction (-)	Mole- fraction (-)	Chemical formula	Chemical formula (in equilibrium reactor)	Mw (g/mol)	DH0f (J/mol)	DG0f (J/mol)	LHV (kJ/kg)	HHV (kJ/kg)	Decomposition reaction in C,H2,O2,N,S	Sto. Coef.
С	0.84	0.535	1	1	14.235	-4413.618	6941.488	34189.7	35405.8	Compound	-1.00
Н	0.055	0.421	0.7872	0.7872						С	1
0	0.062	0.0294	0.055	0.055						H2	0.3936
Ν	0.016	0.0088	0.0165	0.0165						O2	0.0275
S	0.022	0.0053	0.00997	0.01						N2	0.00825
										S	0.00997

The scriptlet enables the user to **automatically** change the properties data of the compound by the properties results from the scriptlet.

Compound editor of the "Waste" compound

1.3.1. Final compounds list

The compounds used in this example are listed in the table below. The order of the components has to be kept given that some scripts use this predefined order.

NameChemical formulaCAS numberWasteCH0.787O0.055N0.0165S0.00055000-01-6CharC7440-44.0CharC7742-44.7OxygenN27727-37-9NitrogenN27727-37-9WaterA7732-18-5HydrogenCO1333-74-0Carbon monoxideCO630-08-0Carbon dioxideCO630-08-0TolueneCO124-38-9NaphthaleneA74-82-8Nitric oxideA91-20-3Nitric oxideSO2140-94-9Nitrogen dioxideNO210102-43-9Nitrogen dioxideNO210102-44-0Sulfur tioxideSO214808-60-7Sulfur trioxideSO37446-11-9Sulfur trioxideSO37446-11-9MonoethanolanineC2H7NO141-43-5			
Waste CH0,787O0,055N0,0165S0,0000 55000-01-6 Char C 7440-44-0 Oxygen O2 7782-44-7 Nitrogen N2 7727-37-9 Water H2O 7732-18-5 Hydrogen H2 1333-74-0 Carbon monoxide CO2 630-08-0 Carbon dioxide CO2 124-38-9 Methane CH4 7482-8 Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Nitric oxide SO2 10102-43-9 Nitric oxide NO 10102-43-9 Nitrogen dioxide NO2 10102-43-9 Nitrogen dioxide NO2 10102-43-9 Nitrogen dioxide NO2 10102-43-9 Sulfur dioxide SiO2 14808-60-7 Sulfur trioxide SiO2 14808-60-7 Sulfur trioxide SO3 7446-11-9 Sulfur trioxide SO3 7446-11-9 <th>Name</th> <th>Chemical formula</th> <th>CAS number</th>	Name	Chemical formula	CAS number
Char C 7440-44-0 Oxygen O2 7782-44-7 Nitrogen N2 7727-37-9 Water H2O 7732-18-5 Hydrogen H2 1333-74-0 Carbon monoxide CO 630-08-0 Carbon dioxide CO2 124-38-9 Methane CH4 74-82-8 Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 10102-43-9 Nitric oxide NO2 10102-43-9 Nitrogen dioxide NO2 10102-43-9 Sulfur dioxide SO2 14808-60-7 Sulfur dioxide SO2 14808-60-7 Sulfur trioxide SO3 7446-11-9 Sulfur trioxide SO3 7446-11-9 Sulfur trioxide SO3 7446-11-9	Waste	CH0,787O0,055N0,0165S0,0099	55000-01-6
Oxygen O2 7782-44-7 Nitrogen N2 7727-37-9 Water H2O 7732-18-5 Hydrogen H2 1333-74-0 Carbon monoxide CO 630-08-0 Carbon dioxide CO2 124-38-9 Methane CH4 74-82-8 Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 7446-09-5 Nitric oxide NO2 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Ashes SiO2 14808-60-7 Sulfur SO3 7744-31-9 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Char	С	7440-44-0
Nitrogen N2 7727-37-9 Water H2O 7732-18-5 Hydrogen H2 1333-74-0 Carbon monoxide CO 630-08-0 Carbon dioxide CO2 124-38-9 Methane CH4 74-82-8 Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 10102-43-9 Nitric oxide NO2 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Sulfur SiO2 14808-60-7 Sulfur SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Oxygen	O ₂	7782-44-7
Water H ₂ O 7732-18-5 Hydrogen H ₂ 1333-74-0 Carbon monoxide CO 630-08-0 Carbon dioxide CO ₂ 124-38-9 Methane CH ₄ 74-82-8 Toluene C ₇ H ₈ 108-88-3 Naphthalene C ₁₀ H ₈ 91-20-3 Hydrogen sulfide H ₂ S 7783-06-4 Sulfur dioxide SO ₂ 10102-43-9 Nitric oxide NO 10102-43-9 Nitrogen dioxide SiO ₂ 14808-60-7 Sulfur trioxide SO ₃ 7446-11-9 Monoethanolamine C ₂ H ₇ NO 141-43-5	Nitrogen	N2	7727-37-9
Hydrogen H2 1333-74-0 Carbon monoxide CO 630-08-0 Carbon dioxide CO2 124-38-9 Methane CH4 74-82-8 Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 7446-09-5 Nitric oxide NO 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Ashes SiO2 14808-60-7 Sulfur trioxide SO3 7704-34-9 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Water	H ₂ O	7732-18-5
Carbon monoxide CO 630-08-0 Carbon dioxide CO2 124-38-9 Methane CH4 74-82-8 Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 7446-09-5 Nitric oxide NO2 10102-43-9 Nitrogen dioxide SO2 14808-60-7 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Hydrogen	H ₂	1333-74-0
Carbon dioxide CO2 124-38-9 Methane CH4 74-82-8 Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 7446-09-5 Nitric oxide NO 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Sulfur dioxide SiO2 14808-60-7 Sulfur SiO2 14808-60-7 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Carbon monoxide	со	630-08-0
Methane CH4 74-82-8 Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 7446-09-5 Nitric oxide NO 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Ashes SiO2 14808-60-7 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Carbon dioxide	CO ₂	124-38-9
Toluene C7H8 108-88-3 Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 7446-09-5 Nitric oxide NO 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Ashes SiO2 14808-60-7 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Methane	CH4	74-82-8
Naphthalene C10H8 91-20-3 Hydrogen sulfide H2S 7783-06-4 Sulfur dioxide SO2 7446-09-5 Nitric oxide NO 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Ashes SiO2 14808-60-7 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Toluene	C7H8	108-88-3
Hydrogen sulfide H ₂ S 7783-06-4 Sulfur dioxide SO ₂ 7446-09-5 Nitric oxide NO 10102-43-9 Nitrogen dioxide NO ₂ 10102-44-0 Ashes SiO ₂ 14808-60-7 Sulfur S 7704-34-9 Sulfur trioxide SO ₃ 7446-11-9 Monoethanolamine C ₂ H ₇ NO 141-43-5	Naphthalene	C ₁₀ H ₈	91-20-3
Sulfur dioxide SO2 7446-09-5 Nitric oxide NO 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Ashes SiO2 14808-60-7 Sulfur S 7704-34-9 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Hydrogen sulfide	H ₂ S	7783-06-4
Nitric oxide NO 10102-43-9 Nitrogen dioxide NO2 10102-44-0 Ashes SiO2 14808-60-7 Sulfur S 7704-34-9 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Sulfur dioxide	SO ₂	7446-09-5
Nitrogen dioxide NO2 10102-44-0 Ashes SiO2 14808-60-7 Sulfur S 7704-34-9 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Nitric oxide	NO	10102-43-9
Ashes SiO2 14808-60-7 Sulfur S 7704-34-9 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Nitrogen dioxide	NO ₂	10102-44-0
Sulfur S 7704-34-9 Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Ashes	SiO ₂	14808-60-7
Sulfur trioxide SO3 7446-11-9 Monoethanolamine C2H7NO 141-43-5	Sulfur	S	7704-34-9
Monoethanolamine C ₂ H ₇ NO 141-43-5	Sulfur trioxide	SO3	7446-11-9
	Monoethanolamine	C ₂ H ₇ NO	141-43-5

1.4. Thermodynamic model

The IGCC is divided in several process blocks which deal with different components such as solid, syngas, pure water, monoethanolamine (MEA). In order to obtain realistic results, several calculators are defined to simulate the IGCC process:

- Global calculator": contains the final compounds list defined previously and is defined with an "Ideal" thermodynamic profile. This calculator is used to simulate the syngas (different hydrocarbons) and the fumes streams for which the ideal mixture (no interaction between molecules) is considered. Indeed, these streams undergo only thermal treatment through heat exchanger and no equilibrium (flash drum) takes place on the syngas and fumes pipelines;
- "Gasification drying": contains the final compounds list defined previously and is defined with a "Bio application with solids" thermodynamic profile. This calculator is specifically used to simulate the drying of the waste with a flash drum. Indeed, the equilibrium occurring in the flash drum has to be accurate to separate the solids from the drying air;
- "Syngas cleaning": contains the final compounds list defined previously and is defined with an "Amines and acid gases" thermodynamic profile. This calculator is used to simulate the CO₂ removal using MEA ("Gas cleaning" block of the process);
- Pure water": contains only the "water" compound and therefore, is defined with a "Pure water" thermodynamic profile (based on NBS/NRC steam tables). This calculator is used to simulate the water streams.

More information about these models can be found in the thermodynamic models' user guide, which can be accessed from the "MODEL" tab of the Simulis Thermodynamics calculator editor.

1.5. <u>Reactions</u>

Several reactions occur during the gasification process. Thereby, 6 reaction sets have to be defined:

Decomposition" reaction: this reaction is based on the stoichiometric coefficients computed with the "Solid compound" scriptlet:

Decomposition reaction in C,H2,O2,N,S	Sto. Coef.	Notation
Compound	-1.00	-
С	1	-
H2	0.3936	w/2
O2	0.0275	x/2
N2	0.00825	y/2
S	0.00997	Z

$$CH_w O_x N_y S_z \to C + \frac{w}{2}H_2 + \frac{x}{2}O_2 + \frac{y}{2}N_2 + zS$$

Combustion" reaction: conventional combustion reaction of the char (C):

$$C + O_2 \rightarrow CO_2$$

> "Gasification" reactions: conventional gasification reactions of the char (C):

$$C + CO_2 \rightarrow 2CO$$

 $C + H_2O \rightarrow CO + H_2$

"Decarbonation" reaction: conventional combustion reaction of the char (C):

$$C + O_2 \to CO_2$$

> "WGS" reaction: water gas shift reaction:

$$CO + H_2O \leftrightarrow CO_2 + H_2$$

> "Balancing" reactions: this set of reactions represents the pyrolysis reactions. These reactions are described with distribution rates (I_1 , I_2 , I_3 , I_4 , I_5):

$$\frac{1}{2}N_2 + \frac{1}{2}(2 - I_1) * O_2 \to I_1 * NO + (1 - I_1) * NO_2$$
⁽¹⁾

$$S + (1 - I_2) * O_2 + I_2 * H_2 \to I_2 * H_2 S + (1 - I_2) * SO_2$$
⁽²⁾

$$C + \frac{1}{2}(2 - I_3) * O_2 \to I_3 * CO + (1 - I_3) * CO_2$$
(3)

$$H_2 + \frac{1}{2}O_2 \to H_2O \tag{4}$$

$$(10 - 9 * I_4 - 3 * I_5 - 3 * I_4 * I_5) * C + (4 - 2 * I_4) * H_2 \rightarrow I_4 * CH_4 + I_5 * (1 - I_4) * C_7 H_8 + (1 - I_5)(1 - I_4) * C_{10} H_8$$
(5)

With:

- I_1 : Distribution rate between NO and NO₂ (%)
- I_2 : Distribution rate between H₂S and SO₂ (%)
- I_3 : Distribution rate between CO and CO₂ (%)
- I_4 : Distribution rate between CH₄ and the tars (C₇H₈, C₁₀H₈) (%)
- I_5 : Distribution rate between C₇H₈ and C₁₀H₈ (%)

Note: The order of the reactions for the "Balancing" set has to be kept given that the script of the "Balancing" reactor uses this predefined order.

Reactions	Reaction sets
C + 02 => C02 Controlled C + C02 => 2C0 Controlled C + H20 => C0 + H2 Controlled C0 + H20 <=> C02 + H2 Equilibrium CHw0xNySz => C + (w/2) Controlled 0,5N2 + 0,5(2-H)02 => HN Controlled S + (1-I2)02 +I2H2 => I2H2 Controlled C + 0,5(2-H)02 => I3C0 + Controlled H2 + 0,502 => H20 Controlled (10-9I4-3I5-3I4I5)C + (4-2I4 Controlled	Global set Decomposition Combustion Gasification Decarbonation WGS Balancing Add Modify Delete Duplicate
Activate Modify Add Inhibit Duplicate Delete	Heats of reaction From standard enthalpies of formation at 298.15 K Enthalpy basis: Perfect gas state at 298.15K

Different reaction sets

All the reactions are defined as "controlled" reactions except the water gas shift (WGS) reaction defined as an equilibrium reaction:

Chemical reaction definit	tion		8	Chemical reaction definit	ion		X
Name C + O2 => CO2				Name CO + H2O <=> CO2 +	H2		
Identification Stoichiometry	Orders Notes			Identification Stoichiometry	Orders Notes		
Reaction type	Controlled	~		Reaction type	Equilibrium	~	
Kinetic model	Concentration	~		Kinetic model	Concentration	\sim	
Mathematical model	Polynomial	\sim		Mathematical model	Logarithmic	\sim	
Activation energy	0	cal/mol	\sim	Activation energy	12600	J/mol	\sim
Heat of reaction	-393,8	kJ/mol	\sim	Heat of reaction	-41	kJ/mol	\sim
	Frequency factor: $\boxed{\frac{1}{\underbrace{\frac{1}{\sum_{i=1}^{N_c} \alpha_{j,i} - 1}}}}$	Us: h Uc: moVI P: atm	> >		Equilibrium constants: a1 0 a2 0 a3 0 a4 0 a5 0		
		Ok	Cancel			Ok	Cancel

Chemical reaction definition windows for all the reactions (left one) except for WGS reaction (right one)

1.6. Operating conditions of the "Gasification island" block

1.6.1. Air Separation Unit (ASU)

The operating conditions required to define the ASU are gathered in this part.

✓ Coal feed

		Coal feed
Mass percentage	Waste (Coal)	87.71
	Ashes	7.24
	H ₂ O	5.05
Total mass flowrate (t/h)		6.25
Temperature (°C)		20
Pressure (atm)		1

✓ Air for separation

		Air feed
Molar percentage	N ₂	0.21
	O ₂	0.79
Total molar flowrate (Nm3/h)		23000
Temperature (°C)		25
Pressure (atm)		1

 \checkmark Air for drying

		Air feed
Molar percentage	N ₂	0.21
	O ₂	0.79
Total molar flowrate (Nm3/h)		5000
Temperature (°C)		25
Pressure (atm)		1

✓ Component splitter

Operating parameters	Filter
Recovery ratios on the overhead stream	Overhead stream feeds in the "Air separation unit" module
Nitrogen	1
Oxygen	1

The "Filter" unit operation aims to remove potential impurities or water in the input air.

Operating parameters	Air separation unit	
Recovery ratios on the overhead stream	Overhead stream (enriched in oxygen) feeds the gasifier	
Nitrogen	0.01	
Oxygen	0.998	
Separator temperature (°C)	25	
Separator pressure (bar)	40	

✓ Stream splitter

Version: March 2024

Operating parameters	Air splitter
Specification type	Molar flowrates
Molar flowrate of the decarbonation air feed (Nm ³ /h)	320

✓ Windows script: "Pyrolysis"

This windows script is used to provide parameters for the gasifier. It has to be calculated as the first module in the calculation sequence that is why it is connected to the "Air for separation" feed with an information stream.

This information stream is only used to impose the calculation sequence and is configured as presented in the following screenshot.

In the rest of this document a so configured information stream will be called "empty".

Information stream (\$ISTR)	_		\times
Name: Inf			
Desc:			
Identification Parameters Notes			
Impose the calculation sequence			
_			
	ок	Cano	el

The following script has been used ("Pyrolysis" windows script):

```
•_____
' Validation of module
......
Function OnCalculation()
 OnCalculation = True
End Function
' CALL OF "UNIT CONVERSION" SCRIPT
·-----
With CreateObject("Scripting.FileSystemObject")
 ExecuteGlobal .OpenTextFile(Project.ApplicationPath & "Scripts\UnitConversion.vbs", 1).ReadAll()
End With
 Print of results/parameters
·_____
                                      Sub OnPrintResults()
 Temperature_Unit = ReportUnit("Temperature")
 With Module
   .PrintReport(" ")
   .PrintReport(" PROVIDED DATA FOR PYROLYSIS")
   .PrintReport(" -----" & vbLf)
   .PrintReport(" Conversion rate of char for pyrolysis")
   .PrintReport("
                 - Conversion rate : " & FormatNumber(.Parameter(1),2) & " % mass" & vbLf)
   .PrintReport(" Reactions parameters for synthesis gas")
                                                                                  ......
   .PrintReport("
                 - Distribution rate between NO and NO2
                                                                                    &
                                                                                :
   FormatNumber(.Parameter(2),2) & " %")
                                                                                  .....
   .PrintReport("
                        - Distribution rate between H2S and SO2
                                                                                     &
                                                                                :
   FormatNumber(.Parameter(3),2) & " %")
                                                                                  .....
   .PrintReport("
                       - Distribution rate between CO and CO2
                                                                                     &
                                                                                :
   FormatNumber(.Parameter(4),2) & " %")
   .PrintReport("
                        - Distribution rate between CH4 and the tars
                                                                                     &
                                                                                :
   FormatNumber(.Parameter(5),2) & " %")
                                                                                  .0
   .PrintReport("
                         - Distribution rate between C7H8 and C10H8
                                                                                     &
                                                                                :
   FormatNumber(.Parameter(6),2) & " %")
                                                                                  н.
   .PrintReport(" - Conversion rate of the oxygen
                                                                                    &
   FormatNumber(.Parameter(7),2) & " %" & vbLf)
 End with
End Sub
```

Integrated Gasification Combined Cycle (IGCC) Plant

Version: March 2024

Script module (\$XTMO	9)		23	
Name: Pyrolysis				
Desc: Parameters of the pyr	rolysis			
Identification Scripts Rep	ort Streams Notes			
PAR size: 7			≡	
Index	Par	Info	•	
1	0	-	^	
2	50	Distribution rate between NO and NO2 (%)		
3	50 Distribution rates	Distribution rate between H2S and SO2 (%)		
4	76 $(I_1 \text{ to } I_5)$	Distribution rate between CO and CO2 (%)		
5	97	Distribution rate between CH4 and the tars (C7H8, C10H8) (%)		
6	50	Distribution rate between C7H8 and C10H8 (%)		
7	85	Conversion rate of the oxygen (C + O2 => CO + CO2) (%)		
			*	
		OK Cancel		

1.6.2. Gasifier

In the gasifier, coal undergoes a series of chemical and physical changes:

- Coal Drying (Chamber 1);
- > Decomposition, Devolatilization (Pyrolysis) (Chamber 2);
- Combustion (Chamber 2 and 3);
- Char Gasification (Chamber 3).

Each chemical change is associated to a reaction set (cf.1.5 Reactions) and to a reactor.

Gasifier block diagram for simulation

The Devolatilization or Pyrolysis accounts for a large percentage coal weight loss and occurs rapidly during the initial stages of coal heat up. During this process, the labile bonds between the aromatic clusters in coal are cleaved, generating fragments of molecular weight much smaller than coal. This process is simulated with the "Decomposition" reaction set.

Then, fragments with low molecular weights vaporize and escape from the coal particle to constitute light gases and tar. This part is dealt with the "Devolatization" and "Balancing" blocks.

The fragments with high molecular weight, and hence low vapor pressures, remain in the coal under typical devolatilization conditions until they reattach to the char lattice. The solid product left over from devolatilization and undergoes 2 successive steps of "Combustion" and "Gasification".

The raw syngas from the pyrolysis ("Balancing" reactor), from the first and second gasification of the char are mixed and sent to a "WGS" reactor. The pyrolysis ("Balancing" reactor) and the "WGS" reactor are assumed to be at the same temperature of 600°C.

The gasifier is working on exothermic process that is why it is cooled using a condensed water through a radiant syngas cooler (bundle of tubes for the cooling system). Thereby, the gasifier produced both syngas and high-pressure steam.

The air and the pure oxygen used respectively for drying and pyrolysis/combustion are preheated before entering into the gasifier.

From a technical point of view, the gasifier is presented below:

Schematic of a Gasifier

Chamber layout in the gasifier

Process flow paths of the drying air (yellow) and oxygen (orange)

Process flow path of the cooling system

Gasifier modeling

Chamber 1 modeling

✓ Cooler/Heater

Name	Outlet temperature (°C)	Pressure drop (bar)
Air preheating C1	280	0

✓ Separator

Operating parameters	Chamber_1
Separator type	Liquid-vapor separator
Pressure (bar)	40
Pressure drop (bar)	0.2
Heat duty (W)	Adiabatic

Note: The "calculator" is changed for the separator calculation. In the "Identification" tab of the separator, the calculator "Gasification drying" is selected:

Thermodynamic model:

Gasification drying

Chamber 2 modeling

✓ Coolers/Heaters

Name	Outlet temperature (°C)	Pressure drop (bar)
Air preheating C2	600	0
T_Solid_Pyrolysis	200	0

✓ Component splitters

Operating parameters	Devolatization	
Recovery ratios on the overhead stream	Overhead stream goes to the combustion: "Devola_Solid" stream	
Waste	1	
Char	0.765	

Operating parameters	Filter	
Recovery ratios on the overhead stream	Overhead stream is the "Solid_Excess"	
Ashes	1	
Char	1	

Note: In this example, the "Solid_Excess" has a zero flowrate (no excess of solid)

✓ Stream splitter

Operating parameters	Air splitter C2
Specification type	Molar flowrates
Molar flowrate of the combustion air feed (Nm ³ /h)	3000

✓ Simple reactors

Operating parameters	Decomposition	
Reaction set	"Decomposition"	
Specification type	Reactor with a specified output temperature	
Temperature specified (°C)	600	
Key component	Waste	
Conversion rate of the reaction	1	

Operating parameters	Combustion
Reaction set	"Combustion"
Specification type	Adiabatic reactor
Key component	Oxygen
Conversion rate of the combustion reaction	1

Operating parameters	Balancing	
Reaction set	"Balancing"	
Specification type	Constant temperature reactor	
Key component for reaction n°1	Nitrogen	
Conversion rate of the reaction n°1	1	
Key component for reaction n°2	Sulfur	
Conversion rate of the reaction n°2	1	
Key component for reaction n°3	Char	
Conversion rate of the reaction n°3	0.85	
Key component for reaction n°4	Oxygen	
Conversion rate of the reaction n°4	1	
Key component for reaction n°5	Char	

Conversion rate of the reaction n°5	1
-------------------------------------	---

According to the reaction set for the "Balancing" reactor, distribution rates have to be defined $(I_1, I_2, I_3, I_4, I_5)$. These values are provided directly in the "Pyrolysis" script. Moreover, the conversion rate for the reaction n°3 of the "Balancing" set is also supplied in this script (values in the interface of the "Balancing" reactor" are initial values and are modified by the values of the script). This script enables the user to directly change the distribution rates and the

А₩В

conversion rate without opening the chemical reaction windows editor

Script module (\$XTMO9)				83	
Name: Pyrolysis			ר		
Desc:	Desc: Parameters of the pyrolysis				
Identification Scripts Report Streams Notes					
PAR size: 7				≡	
Index		Par		Info	•
1					^
2		50		Distribution rate between NO and NO2 (%)	
3		50	Distribution rates	Distribution rate between H2S and SO2 (%)	
4		76	(<i>I</i> ₁ to <i>I</i> ₅)	Distribution rate between CO and CO2 (%)	
5		97	, /	Distribution rate between CH4 and the tars (C7H8, C10H8) (%)	
6		50		Distribution rate between C7H8 and C10H8 (%)	
7		85		Conversion rate of the oxygen (C + O2 => CO + CO2) (%)	
					*
				OK Cancel	

The following script has been used ("Balancing" reactor script):

```
Sub OnCalculationStart()
```

```
' Indexes calculation
'
For i = 0 To Project.Compounds.Count-1
CasN = Project.Compounds.Items(i).CasRegistryNumber
Select Case casN
Case "7440-44-0"
C = Module.GlobalToCalculator(i)
Case "7782-44-7"
02 = Module.GlobalToCalculator(i)
Case "7727-37-9"
N2 = Module.GlobalToCalculator(i)
Case "7732-18-5"
H20 = Module.GlobalToCalculator(i)
Case "1333-74-0"
```

Copyright © 2024 Fives ProSim, Labège, France – All rights reserved

Integrated Gasification Combined Cycle (IGCC) Plant

Version: March 2024

```
H2 = Module.GlobalToCalculator(i)
  Case "630-08-0"
    CO = Module.GlobalToCalculator(i)
  Case "124-38-9"
   CO2 = Module.GlobalToCalculator(i)
  Case "74-82-8"
    CH4 = Module.GlobalToCalculator(i)
  Case "108-88-3'
    C7H8 = Module.GlobalToCalculator(i)
  Case "91-20-3"
    C10H8 = Module.GlobalToCalculator(i)
  Case "7783-06-4"
    H2S = Module.GlobalToCalculator(i)
  Case "7446-09-5
    S02 = Module.GlobalToCalculator(i)
  Case "10102-43-9"
    NO = Module.GlobalToCalculator(i)
  Case "10102-44-0"
    NO2 = Module.GlobalToCalculator(i)
  Case "7704-34-9"
   S = Module.GlobalToCalculator(i)
  End Select
Next
' Calculation of the stoichiometric coefficients
' Get the parameters from "Pyrolysis" windows script
With Project.Modules("Pyrolysis")
  L1 = .Parameter(2) / 100.0
  L2 = .Parameter(3) / 100.0
  L3 = .Parameter(4) / 100.0
  L4 = .Parameter(5) / 100.0
  L5 = .Parameter(6) / 100.0
 Tx = .Parameter(7) / 100.0
End With
Dim Reaction
With Module
  'MsgBox .ReactiveCalculator.Reactions.Count
  For i=1 To .ReactiveCalculator.Reactions.Count
    Set Reaction = .ReactiveCalculator.Reactions.Items(i-1)
    'MsgBox Reaction.Name
    If Reaction.Name = "0,5N2 + 0,5(2-11)02 => 11N0 + (1-11)N02" Then
      'MsgBox Reaction.Name
      Reaction.StoichiometricCoefficient(N2) = -0.5
      Reaction.StoichiometricCoefficient(02) = -(2.0-L1)/2.0
      Reaction.StoichiometricCoefficient(NO) = L1
      Reaction.StoichiometricCoefficient(NO2) = 1.0 - L1
    ElseIf Reaction.Name = "S + (1-12)02 +12H2 => 12H2S + (1-12)S02" Then
      'MsgBox Reaction.Name
      Reaction.StoichiometricCoefficient(S) = -1.0
      Reaction.StoichiometricCoefficient(02) = -(1.0-L2)
      Reaction.StoichiometricCoefficient(H2) = -L2
      Reaction.StoichiometricCoefficient(H2S) = L2
      Reaction.StoichiometricCoefficient(S02) = 1.0 - L2
    ElseIf Reaction.Name = "C + 0,5(2-13)02 => 13C0 + (1-13)C02" Then
      'MsgBox Reaction.Name
      Reaction.StoichiometricCoefficient(C) = -1.0
      Reaction.StoichiometricCoefficient(02) = -(2.0-L3)/2.0
      Reaction.StoichiometricCoefficient(CO) = L3
      Reaction.StoichiometricCoefficient(CO2) = 1.0 - L3
    ElseIf Reaction.Name = "H2 + 0,502 => H20" Then
      'MsgBox Reaction.Name
      Reaction.StoichiometricCoefficient(H2) = -1.0
      Reaction.StoichiometricCoefficient(02) = -0.5
      Reaction.StoichiometricCoefficient(H20) = 1.0
```

Integrated Gasification Combined Cycle (IGCC) Plant

Version: March 2024

```
Page: 27 / 51
```

End Sub

✓ Reaction tank

Operating parameters	Gasification
Reaction set	"Gasification"
Specification type	Adiabatic reactor
Temperature specified (°C)	600
Key component of reaction n°1	Carbon dioxide
Conversion rate of the reaction n°1	1
Key component of reaction n°2	Water
Conversion rate of the reaction n°2	1

✓ Equilibrium reactor

Operating parameters	WGS
Reaction set	"WGS"
Method	Equilibrium constants
Specification type	Equilibrium temperature
Temperature specified (°C)	700

In the gasifier, the WGS and the pyrolysis take place at the same temperature. To take into account this additional specification, an information stream is added from the "Decomposition" reaction to the "WGS" reactor.

The temperature specification from the "Decomposition" is sent to the "WGS" reactor:

Information stream (\$ISTR14)				
Name: T(WGS)				
Desc:				
Identification Parameters Notes				
Information type to be emitted:				
Reactor output temperature				
Information vector to be emitted will be automaticaly determined depending on the parameters of "Decomposition"				
Start: 0 End: 0				
Information type to be received:				
Equilibrium temperature				
Information vector to be emitted will be automaticaly determined depending on the parameters of "WGS"				
Start: 0 End 0				
OK Cancel				

✓ Windows script

The "DHR_Pyro" is used to compute the heat of reaction of the "Pyrolysis" reaction.

The following script has been used ("DHR_Pyro" windows script):

```
'_____'
' CALL OF "UNIT CONVERSION" SCRIPT
'_____'
with CreateObject("Scripting.FileSystemObject")
    ExecuteGlobal .OpenTextFile(Project.ApplicationPath & "Scripts\UnitConversion.vbs", 1).ReadAll()
end with
'_______
```

Integrated Gasification Combined Cycle (IGCC) Plant

Version: March 2024

```
Page: 29 / 51
```

```
' Calculation of the enthalpy of the pyrolysis reaction
Function OnCalculation()
 Statement
  Dim DH0f()
  With Project
    Get enthalpy of formation DH0f
    NC = .Compounds.Count
    ReDim DH0f(NC)
    For i = 1 To NC
        DH0f(i-1) = Convert("Molar enthalpy", .Compounds.Items(i-1).DeltaH0v.Value,
        .Compounds.Items(i-1).DeltaH0v.UnitName, "kcal/kmol")
        CasN = Project.Compounds.Items(i-1).CasRegistryNumber
        If Casn = "55000-01-6" Then
              MwDIB
                        = Convert("Molar mass", .Compounds.Items(i-1).Mw.Value, .Compounds.Items(i-
               1).Mw.UnitName, "kg/kmol")
           DIBDebMol = .Streams("Dry_Solid").PartialMolarFlowRate(i)
        End If
    Next
    Calculation of the reaction heat
    DHR = 0.0
    For i = 1 To NC
       DHR = DHR + (.Streams("Pyrolysis_Solid").PartialMolarFlowRate(i) +
        .Streams("Pyrolysis_Gas").PartialMolarFlowRate(i) -
        .Streams("Dry_Solid").PartialMolarFlowRate(i) -
        .Streams("Pyrolysis_Air").PartialMolarFlowRate(i)) * DH0f(i-1)
    Next
  End With
  Module.Parameter(3) = DHR
  Module.Parameter(1) = DHR / DIBDebMol
  Module.Parameter(2) = (DHR / DIBDebMol) / MwDIB
' Validation of the module
  OnCalculation = True
End Function
' Print results
Sub OnPrintResults()
  MolarEnthalpy Unit = ReportUnit("Molar enthalpy")
  MassEnthalpy_Unit = ReportUnit("Mass enthalpy")
  EnthalpicFlow_Unit = ReportUnit("Enthalpic flow")
  With Module
    .PrintReport(" ")
    .PrintReport(" PYROLYSIS HEAT OF REACTION")
    .PrintReport(" -----
                                                    -----" & vbLf)
                       - Molar : " & FormatNumber(Convert("Molar enthalpy", .Parameter(1),
    .PrintReport("
       "kcal/kmol", MolarEnthalpy_Unit),1) & " " & MolarEnthalpy_Unit)
                      - Mass : " & FormatNumber(Convert("Mass enthalpy", .Parameter(2),
MassEnthalpy_Unit) ,1) & " " & MassEnthalpy_Unit)
        - Heat duty : " & FormatNumber(Convert("Enthalpic flow", .Parameter(3),
    .PrintReport("
       "kcal/kg",
    .PrintReport("
                      EnthalpicFlow_Unit) ,1) & " " & EnthalpicFlow_Unit)
       "kcal/h",
  End with
```

```
End Sub
```

The "Energy_Balance" script is used to compute the heat duty released in the gasifier. This amount of heat duty is used to heat the HP (high pressure) condensed water to generate HP steam.

Copyright © 2024 Fives ProSim, Labège, France – All rights reserved

Integrated Gasification Combined Cycle (IGCC) Plant

Version: March 2024

The following script has been used ("Energy_Balance" windows script):

```
_____
' CALL OF "UNIT CONVERSION" SCRIPT
With CreateObject("Scripting.FileSystemObject")
  ExecuteGlobal .OpenTextFile(Project.ApplicationPath & "Scripts\UnitConversion.vbs", 1).ReadAll()
End With
' Energy balance on the component splitter "Devolatization"
Function OnCalculation()
 Heat duty recovery
  With Project
                  = .Streams("Elements").EnthalpyFlux
   Hin
   Hout_Solides = .Streams("Devola_Solid").EnthalpyFlux
   Hout_Gaz = .Streams("Devola_Gas").EnthalpyFlux
    Q_Decomposition = .Modules("Decomposition").HeatDuty
   Q_SolidePyrolyse = .Modules("T_Solid_Pyrolysis"). HeatDuty
Q_Equilibrage = .Modules("Balancing"). HeatDuty
    Q_Ciel_Gazeux = .Modules("WGS"). HeatDutySpecValue
    Q Cendres = .Modules("T(Ashes)"). HeatDuty
  End With
 Calculation
  Balance on conversion
  Q_Devolatilisation = (Hout_Solides + Hout_Gaz) - Hin
 Balance on pyrolysis
  Q_Pyrolyse = Q_Decomposition + Q_Devolatilisation + Q_Equilibrage + Q_SolidePyrolyse
 Balance on the gasifier
  Q_calc = Q_Pyrolyse + Q_Ciel_Gazeux + Q_Cendres
 Gap
  Q_Consigne = Module.Parameter(1)
  Ecart
           = Q_calc - Q_Consigne
 Save results
  . . . . . . . .
  With Module
    .Parameter(2) = Q_Pyrolyse
    .Parameter(3) = Q_Ciel_Gazeux
    .Parameter(4) = Q_Cendres
   .Parameter(5) = Q_calc
    .Parameter(6) = Ecart
  End With
' Validation of the module
 OnCalculation = True
End Function
 _____
' Print results
Sub OnPrintResults()
 With Module
```

Copyright © 2024 Fives ProSim, Labège, France – All rights reserved


```
End Sub
```


Decarbonation modeling

Coolers/Heaters

Name	Outlet temperature (°C)	Pressure drop (bar)
Air preheating C3	600	0
T(Ashes)	1200	0

✓ Simple reactor

Operating parameters	Chamber_3.1
Reaction set	"Combustion"
Specification type	Adiabatic reactor
Key component	Oxygen
Conversion rate of the reaction	1

✓ Reaction tank

Operating parameters	Chamber_3.2
Reaction set	"Gasification"
Specification type	Adiabatic reactor
Temperature specified (°C)	600
Key component of reaction n°1	Carbon dioxide
Conversion rate of the reaction n°1	1
Key component of reaction n°2	Water
Conversion rate of the reaction n°2	1

1.6.2.1. <u>Air preheating</u>

The syngas produced at 600°C preheats the oxygen or air for the 3 chambers. The simple heat exchanger "Air Preheating Balancing" is added on the syngas outlet from the gasifier and cools the syngas from 600°C to \approx 360°C.

✓ Simple heat exchanger

Name	Heat duty (W)	Pressure drop (bar)
Air Preheating Balancing	0	0

The following script is coded in the "Script" tab of the "Air Preheating Balancing" unit operation to extract the heat duties from the 3 preheating exchangers:

```
Sub OnCalculationStart()
```

```
Q1 = Project.Modules("Air preheating C1").HeatDuty
Q2 = Project.Modules("Air preheating C2").HeatDuty
Q3 = Project.Modules("Air preheating C3").HeatDuty
Module.HeatDutySpecValue = Q1 + Q2 + Q3
```

End Sub

1.6.3. H2S Removal and Heat Recovery

The syngas produced from the gasifier goes through successive purification steps. The main objective of the purification is to remove the sulfur, the chlorine, the ammonia and the carbon dioxide from the syngas. The syngas traditionally crosses filters (fly ash particles removal), water wash column (part of H₂S, HCl, HF and ammonia).

The acid gas resulting from desulfuration, with a high H_2S content, is sent to a Claus unit for recovering sulfur, obtaining pure solid sulfur ready to be sold. The Claus tail gas is recirculated into the process, enabling 99.8% of the sulfur content of the gas to be recovered.

Note: A number of different sulfur removal and recovery systems have been studied in IGCC and coal-to-SNG plant designs. Another most common configuration is the Selexol process for sulfur removal from the raw syngas, a two-stage Claus plant for recovery of elemental sulfur, and the Shell Claus off-gas treating (SCOT) process for treatment of the tail gas from the Claus plant.

In this example, the Claus unit is not modeled. This part of the process is dealt in the "PSPS_EX_EN-Claus-Process" application example. Moreover, the successive purification steps are simulated with a simple component splitter.

The syngas is cooled before and after the "H2S Removal" to recover a maximum of energy.

✓ Coolers/Heaters

Name	Outlet temperature (°C)	Pressure drop (bar)
Radiant and convective cooler	250	0
Heat recovery	180	0
Cooling	120	0
Cooling water	50	0

✓ Component splitter

Operating parameters	H2S removal (NH3) washing
Recovery ratios on the overhead stream	Overhead stream goes to the "Cleaning gas" process
Hydrogen sulfide	0.99
Sulfur dioxide	0.9

✓ Simple heat exchangers

Name	Heat duty (W)	Pressure drop (bar)
Radiant and convective cooler bis	0	0
Cooling water bis	0	0
Gasifier radiant cooler	0	0

The simple heat exchangers duties of "Radiant and convective cooler bis" and "Cooling water bis" are fixed by information streams from coolers on the syngas pipe. The heat duty of "Gasifier radiant cooler" is provided by the "Energy_balance" windows script:

Information stream (\$ISTR6)		
Name: Q_gasification		
Desc:		
Identification Parameters Notes		
Information type to be emitted:		
Defined by its position in the unit block's parameter		
Supply here the first and the last locations of the information stream to be emitted from "Energy_Balance"		
Start: 5 End: 5		
Information type to be received:		
Heat duty		
Information vector to be emitted will be automaticaly determined depending on the parameters of "Gasifier radiant cooler"		
Start: 0 End 0		
OK Cancel		

Information stream windows editor (between "Gasifier radiant cooler" and "Energy_balance")

✓ Expansion valve

Operating parameters	Valve
Constraint type	Pressure specification
Pressure supplied (atm)	1

1.6.4. Gas Cleaning

As the final gas cleaning process, the remaining sulfur compounds and the carbon dioxide CO₂ are separated in an absorber using an amine solvent.

"Gas cleaning" process

✓ "MEA Feed Recycle" feed

		MEA Feed Recycle
MassH2OpercentageMEA	H ₂ O	80
	MEA	20
Total mass flow	ate (t/h)	100
Temperature (°C)	40
Pressure (atm)		1

Pumps

Operating parameters	Pump rich amine
Exhaust pressure (kPa)	750
Isentropic efficiency	0.75
Mechanical efficiency	1
Electrical efficiency	1

Operating parameters	Pump lean amine
Exhaust pressure (kPa)	700
Isentropic efficiency	0.75
Mechanical efficiency	1
Electrical efficiency	1

✓ Expansion valve

Operating parameters	Amine valve
Constraint type	Pressure specification
Pressure supplied (kPa)	200

✓ Absorber

Operating parameters	Absorber
Number of theoretical stages	2

✓ Distillation column

Operating parameters	Desorber
Number of theoretical stages	12
Feed stage	2
Specification type for operating conditions	Vapor distillate and reflux ratio
Vapor distillate flowrate (t/h)	10
Molar reflux ratio	1
Initialization of vapor distillate recovery ratios	-
Water	0.1
Carbon dioxide	0.6
Monoethanolamine	0.001

✓ Generalized heat exchanger

Operating parameters	MEA Heat exchanger recovery
Constraint type : "Other"	Minimal internal temperature approach
Temperature deviation (°C)	10

✓ Calculator Switch

Version: March 2024

Name	MEA Heat exchanger recovery
Calculator Switch (input syngas)	"Syngas cleaning"
Calculator Switch 1 (output syngas)	Global model ("Global calculator")

Note: The add-in and the recycle of the MEA (connection between the feed and the outlet of MEA mixture) is not modelled in this example. Refer to the "PSPS_EX_EN – Simple Example" or "PSPS_EX_EN – Cyclohexane Plant" application examples to deal with recycle in process.

Note: A more detailed example of gas sweetening with alkanol amine is available in the "PSPS_EX_EN_CO2 capture with amine process" application example.

1.6.5. Saturator

The cleaned gas obtained is saturated with water and sent to the combined cycle.

✓ "Water saturator" feed

		Water saturator
Mass percentage	H ₂ O	100
Total mass flowra	ate (t/h)	2
Temperature (°C)		45
Pressure (atm)		15

Note: The calculator used for water streams is the "Pure water" calculator.

Note: The add-in and the recycle of the water (connection between the feed and the outlet of water) are not modelled in this example.

✓ Separator

Operating parameters	Saturator
Separator type	Constant pressure and enthalpy flash
Pressure (bar)	The lowest of the feed streams
Heat duty (W)	Adiabatic

✓ Simple heat exchangers

Name	Heat duty (W)	Pressure drop (bar)
Saturator heating water	0	0
Heat recovery	0	0

The simple heat exchangers duties are fixed by incoming information streams from coolers on the syngas pipe (cf. 1.6.3 H2S Removal and Heat Recovery).

1.7. Operating conditions of the "Combined cycle" block

1.7.1. Gas turbine

The syngas exits from the saturator and comes in the gas turbine.

Note: the "Fuel turbine" unit operation uses conventional combustion reaction. It is not necessary to add combustion reactions concerning the syngas. This step is performed automatically in the "Reactions" tab of the combustion definition.

✓ Fuel Turbine

Operating parameters	Gas turbine
Compressor constraint	Compression ratio
Ratio of the compressor	21
Mechanical yield of the compressor (%)	98
Isentropic yield of the compressor (%)	75
Turbine constraint	Outlet pressure
Pressure (atm)	1
Mechanical yield of the turbine (%)	98
Electrical yield of the turbine (%)	99
Isentropic yield of the turbine (%)	80
Combustive type	Air
% mass content of O ₂ in fumes	2
LHV of the fuel	Calculated from compounds data

1.7.2. Heat Recovery Steam Generator (HRSG)

The heat recovery steam generator (HRSG) is a set of heat exchangers in which heat is removed from the gas turbine exhaust gas (fumes) to generate steam. Typically, steam is generated at two or three different pressures, and associated with the HRSG is one steam drum for each steam pressure level. High pressure superheated steam is generated for use in the steam turbine, and typically the exhaust from the steam turbine first stage is reheated. The input streams to the HRSG section include the gas turbine exhaust and the water feed. The major output streams are the high and low-pressure steams to the steam turbines. Several parts of the HRSG must be sized to accommodate the high-pressure steam flow, including the superheater, reheater, high pressure steam drum, high pressure evaporator, and the economizers.

In this example, the HRSG is simplified with 2 stages (high and low pressure) for which fumes crosses the super heater, the HP evaporator, the HP economizer, the LP Evaporator and finally the LP economizer before being released in the atmosphere:

Schematics of the HRSG

✓ Generalized heat exchangers

Operating parameters	Super heater
Constraint type: "Cold stream"	Superheated over its dew point temperature
Temperature difference (°C)	200

Operating parameters	HP Evaporator
Constraint type : "Cold stream"	Superheated over its dew point temperature
Temperature difference (°C)	1

Operating parameters	HP Economizer
Constraint type : "Cold stream"	Superheated over its dew point temperature
Temperature difference (°C)	-1

Operating parameters	LP Evaporator
Constraint type: "Cold stream"	Superheated over its dew point temperature
Temperature difference (°C)	150

Operating parameters	LP Economizer
Constraint type: "Cold stream"	Superheated over its dew point temperature
Temperature difference (°C)	-1

1.7.3. Steam turbines

A typical steam turbine system for an IGCC plant consists of high-pressure, intermediate pressure, and low-pressure turbine stages, a generator, and an exhaust steam condenser. The high-pressure stage receives high pressure superheated steam from the HRSG. The outlet steam from the high-pressure stage returns to the HRSG for reheat, after which it enters the intermediate pressure stage. The outlet from the intermediate pressure stage goes to the low-pressure stage.

In this example, the steam turbine system is simplified with a 2 stages steam turbine.

✓ "Water saturator" feed

		Water recycle
Mass percentage	H₂O	100
Total mass flowrate (t/h)		33
Temperature (°C)		25
Pressure (atm)		1

Note: The calculator used for water streams is the "Pure water" calculator.

"Steam turbine" process

✓ Pumps

Operating parameters	LP pump
Exhaust pressure (bar)	50
Volumetric efficiency	0.65
Mechanical efficiency	1
Electrical efficiency	1

Operating parameters	HP pump
Exhaust pressure (bar)	120
Volumetric efficiency	0.65
Mechanical efficiency	1
Electrical efficiency	1

✓ Expanders

Operating parameters	LP Turbine
Exhaust pressure (bar)	0.07
Isentropic efficiency	0.85
Mechanical efficiency	0.98
Electrical efficiency	0.99

Operating parameters	HP Turbine
Exhaust pressure (atm)	50
Isentropic efficiency	0.85
Mechanical efficiency	0.98
Electrical efficiency	0.99

✓ Stream splitters

Operating parameters	Water splitter
Specification type	Mass flowrates
Mass flowrate of the HP water (to "HP pump") (t/h)	25

Operating parameters	HP water splitter
Specification type	Mass flowrates
Mass flowrate of water to the gasifier (t/h)	16

Note: The mixers are defined with default values (outlet pressure is the lowest pressure of the feeds). Note: The add-in and the recycle of the water (connection between the feed and the outlet of water) are not modelled in this example.

2. SIMULATION RESULTS

2.1. Results summary

In the same way the "Pyrolysis" windows script allows the user to provide and define input parameters, the "Electricty output" windows script aims to summarize the global performance of the IGCC plant.

Integrated Gasification Combined Cycle (IGCC) Plant

Version: March 2024

	Electricity output				
Desc:					
Identifi	action Scripts Do	part Straama Notaa			
identitio	Cation Compts Rep	port Streams Notes		_	
PAR si	ize: 11				
Index		Par	Info		
1		0	HP turbine power		
2		0	LP turbine power		
3		0	Total steam turbines power		
4		0	Total electric power		
6		0	Thermal energy of the syngas		
7		0	Thermal energy of the syngals		
8		0	LHV (mass) of the waste		
9		0	LHV (mass) of the syngas		
10		0	Gross electrical efficiency (based on waste)	
11		0	Electrical efficiency (based on syngas)		
I					
			ОК	Cancel	
reateObjec	t("Scriptin	g.FileSystemObjec	t")	*	
lreateObjec uteGlobal uteGlobal	t("Scriptin .OpenTextFi .OpenTextFi	g.FileSystemObjec le(Project.Applic le(Project.Applic	t") ationPath & "Scripts\UnitConver ationPath & "Scripts\StreamProp	<pre>' sion.vbs", 1).R erties.vbs", 1)</pre>	leadA .Rea
CreateObjec cuteGlobal cuteGlobal th	t("Scriptin .OpenTextFi .OpenTextFi	g.FileSystemObjec le(Project.Applic le(Project.Applic	t") ationPath & "Scripts\UnitConver ationPath & "Scripts\StreamProp	<pre>' sion.vbs", 1).R erties.vbs", 1)</pre>	eadA .Rea
CreateObjec CuteGlobal CuteGlobal	t("Scriptin .OpenTextFi .OpenTextFi	g.FileSystemObjec le(Project.Applic le(Project.Applic	t") ationPath & "Scripts\UnitConver ationPath & "Scripts\StreamProp	' sion.vbs", 1).R erties.vbs", 1)	eadA .Rea
CreateObjec cuteGlobal cuteGlobal ith	t("Scriptin .OpenTextFi .OpenTextFi	g.FileSystemObjec le(Project.Applic le(Project.Applic	t") ationPath & "Scripts\UnitConver ationPath & "Scripts\StreamProp	' sion.vbs", 1).R erties.vbs", 1) '	eadA .Rea
CreateObjec cuteGlobal cuteGlobal ith :ulation of	t("Scriptin .OpenTextFi .OpenTextFi	g.FileSystemObjec le(Project.Applic le(Project.Applic	t") ationPath & "Scripts\UnitConver ationPath & "Scripts\StreamProp d efficiencies	' sion.vbs", 1).R erties.vbs", 1) '	eadA .Rea
CreateObjec cuteGlobal ith ith culation of .on OnCalcu	<pre>ct("Scriptin .OpenTextFi .OpenTextFi f the total ulation()</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an	t") ationPath & "Scripts\UnitConver ationPath & "Scripts\StreamProp	' sion.vbs", 1).R erties.vbs", 1) '	eadA
CreateObjec cuteGlobal cuteGlobal ith culation of .on OnCalcu	<pre>t("Scriptin .OpenTextFi .OpenTextFi f the total ulation() .</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an	et") eationPath & "Scripts\UnitConver eationPath & "Scripts\StreamProp nd efficiencies	' sion.vbs", 1).R erties.vbs", 1) '	eadA .Rea
CreateObjec cuteGlobal cuteGlobal ith culation of con OnCalcu otal elect	<pre>t("Scriptin .OpenTextFi .OpenTextFi f the total ulation() tric power o eter(3) = ab</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete	ationPath & "Scripts\UnitConver ationPath & "Scripts\StreamProp d efficiencies and gas turbine	' sion.vbs", 1).R erties.vbs", 1) ' '	eadA .Rea
CreateObjec cuteGlobal cuteGlobal ith culation of ion OnCalcu otal elect iule.Parame	<pre>ct("Scriptin .OpenTextFi .OpenTextFi f the total ulation() cric power o eter(3) = ab eter(5) = ab</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete	<pre>ett") cationPath & "Scripts\UnitConver cationPath & "Scripts\StreamProp d efficiencies and gas turbine er(1)) + abs(Module.Parameter(2) er(3)) + abs(Module.Parameter(4)</pre>	' sion.vbs", 1).R erties.vbs", 1) ' '	eadA
CreateObjec cuteGlobal cuteGlobal ith culation of ion OnCalcu otal elect iule.Parame	<pre>t("Scriptin .OpenTextFi .OpenTextFi f the total ulation() tric power o eter(3) = ab eter(5) = ab</pre>	<pre>g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete</pre>	<pre>ett") cationPath & "Scripts\UnitConver cationPath & "Scripts\StreamProp ed efficiencies and gas turbine er(1)) + abs(Module.Parameter(2) er(3)) + abs(Module.Parameter(4)</pre>	<pre>' sion.vbs", 1).R erties.vbs", 1)''))</pre>	eadA
CreateObjec cuteGlobal cuteGlobal ith culation of ion OnCalcu fotal elect iule.Parame iule.Parame	<pre>t("Scriptin .OpenTextFi .OpenTextFi f the total ulation() tric power o eter(3) = ab eter(5) = ab eter(5) = ab</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete	<pre>st") sationPath & "Scripts\UnitConver sationPath & "Scripts\StreamProp d efficiencies and gas turbine er(1)) + abs(Module.Parameter(2) er(3)) + abs(Module.Parameter(4) er(3)) + abs(Module.Parameter(4)</pre>	<pre>' sion.vbs", 1).R erties.vbs", 1)''))</pre>	eadA .Rea
CreateObjec cuteGlobal cuteGlobal ith culation of con OnCalcu fotal elect dule.Parame dule.Parame	<pre>t("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .dlation() tric power o eter(3) = ab eter(5) = ab eter(5) = ab eter(9) = Pr suelMolecula</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Ga	<pre>sturbine at urbine and gas turbine er(1)) + abs(Module.Parameter(2) er(3)) + abs(Module.Parameter(4)</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)')) roject.Modules(</pre>	eadA. Rea
CreateObjec cuteGlobal cuteGlobal ith culation of con OnCalcu otal elect dule.Parame dule.Parame curbine").F	<pre>t("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi f the total ulation() tric power o eter(3) = ab eter(5) = ab eter(5) = ab eter(9) = Pr uelMolecula eter(8) = Co</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Ga rWeightCalculated nvertToProSim("Ma	<pre>sturbine").FuelLHVCalculated/P ass enthalpy", LHV Mol = Convert</pre>	<pre>' sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar</pre>	eadA . Rea
CreateObjec SuteGlobal SuteGlobal ith Sulation of Con OnCalcu Sotal elect Sule.Parame Sule.Parame Sule.Parame Surbine").F	<pre>t("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Ga rWeightCalculated nvertToProSim("Ma roject.Modules("W	<pre>sturbine").FuelLHVCalculated/P ssturbine").FuelLHVCalculated/P ssturbine").OutputStream(1), 0)</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar , ReportUnit("M</pre>	eadA . Rea "Gas
CreateObjec CuteGlobal CuteGlobal CuteGlobal Ith Culation of Con OnCalcu Cotal elect Jule.Parame Jule.Parame Curbine").F Jule.Parame enthalpy", enthalpy"))	<pre>t("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi .dlation() tric power o eter(3) = ab eter(3) = ab eter(5) = ab eter(9) = Pr uelMolecula eter(8) = Co LHVStream(P)</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Ga rWeightCalculated nvertToProSim("Ma roject.Modules("W	<pre>sturbine attrine abs(Module.Parameter(2) er(3)) + abs(Module.Parameter(4) es turbine").FuelLHVCalculated/P ass enthalpy", LHV_Mol = Convert Vaste_Feed").OutputStream(1), 0)</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar , ReportUnit("M</pre>	eadA .Rea .Gas
CreateObjec CuteGlobal CuteGlobal Th Culation of Con OnCalcu Total elect Aule.Parame Cule.Parame Curbine").F Jule.Parame enthalpy", enthalpy")) Jule.Parame	<pre>t("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi .dlation() tric power o eter(3) = ab eter(3) = ab eter(5) = ab eter(5) = ab eter(9) = Pr FuelMolecula eter(8) = Co LHVStream(P eter(8) = LH</pre>	g.FileSystemObject le(Project.Applic) le(Project.Applic) electric power an f steam turbines s(Module.Paramete ss(Module.Paramete gas and waste oject.Modules("Ga rWeightCalculated nvertToProSim("Ma roject.Modules("W	<pre>stionPath & "Scripts\UnitConver cationPath & "Scripts\StreamProp ad efficiencies and gas turbine er(1)) + abs(Module.Parameter(2) er(3)) + abs(Module.Parameter(4) es turbine").FuelLHVCalculated/P ass enthalpy", LHV_Mol = Convert Vaste_Feed").OutputStream(1), 0) Hules("Waste_Feed").OutputStream</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar , ReportUnit("M (1).MolarWeight</pre>	"Gas , lolar
CreateObjec CreateObjec CuteGlobal CuteGlobal th Culation of Con OnCalcu Cotal elect Cute.Parame Cut	<pre>ct("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi .dlation() f the total ulation() cric power o eter(3) = ab eter(3) = ab eter(5) = ab eter(5) = ab eter(9) = Pr fuelMolecula eter(8) = Co LHVStream(P) eter(8) = LH eter(8) = LH</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Ga rWeightCalculated nvertToProSim("Ma roject.Modules("W	<pre>sturbine").FuelLHVCalculated/P ass enthalpy", LHV_Mol = Convert laste_Feed").OutputStream(1), 0) dules("Waste_Feed").OutputStream</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)''))) roject.Modules(ToProSim("Molar , ReportUnit("M (1).MolarWeight</pre>	eadA .Rea .Gas
CreateObjec CreateObjec CreateObjec CreateObject Creat	<pre>ct("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi</pre>	<pre>g.FileSystemObjec le(Project.Applic) le(Project.Applic) electric power an f steam turbines s(Module.Paramete s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Gas rWeightCalculated nvertToProSim("Ma roject.Modules("W V_Mol/Project.Mod ject.Modules("Gas</pre>	<pre>sturbine").FuelMassFlowrateCalc</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar , ReportUnit("M (1).MolarWeight ulated *</pre>	eadA .Rea .Gas lolar
CreateObjec cuteGlobal cuteGlobal ith culation of con OnCalcu fotal elect dule.Parame dule.Parame curbine").F dule.Parame inthalpy", inthalpy")) dule.Paramet ile.Paramet	<pre>t("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Ga rWeightCalculated nvertToProSim("Ma roject.Modules("W V_Mol/Project.Mod	<pre>sturbine").FuelMassFlowrateCalc</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar , ReportUnit("M (1).MolarWeight ulated *</pre>	eadA .Rea .Rea Gas
CreateObjec cuteGlobal cuteGlobal ith cuteGlobal ith culation of con OnCalcu fotal elect dule.Parame lule.Parame curbine").F dule.Parame inthalpy")) dule.Parame ile.Paramet ide.Paramet	<pre>t("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi .dlation() tric power o eter(3) = ab eter(3) = ab eter(3) = ab eter(3) = ab eter(3) = ab eter(3) = b eter(3) = co LHVStream(P) eter(8) = LH ergy power ter(6) = Pro ameter(9) ter(7) = Pro ter(7) = Pro</pre>	g.FileSystemObjec le(Project.Applic le(Project.Applic electric power an f steam turbines s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Ga rWeightCalculated nvertToProSim("Ma roject.Modules("Was ject.Modules("Gas	<pre>sturbine").FuelMassFlowrateCalc dules("Waste_Feed").OutputStream(1).MassF dules(1).fuelMassFlowrateCalc function (1).fuelMassFlowrateCalc function (1).fuelMassFlowrateCalc</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar , ReportUnit("M (1).MolarWeight ulated * lowrate *</pre>	"Gas , Rea , Nolar
CreateObjec cuteGlobal cuteGlobal ith culation of con OnCalcu fotal elect dule.Parame dule.Parame curbine").F dule.Parame enthalpy")) dule.Paramet ile.Paramet ile.Paramet	<pre>t("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi .dlation() .cric power o eter(3) = ab eter(3) = ab eter(5) = ab eter(5) = ab eter(5) = ab eter(9) = Pr .uelMolecula eter(8) = Co LHVStream(P) .eter(8) = LH ergy power .eter(6) = Pro ameter(9) .eter(7) = Pro .eter(8)</pre>	<pre>g.FileSystemObjec le(Project.Applic) le(Project.Applic) electric power and f steam turbines s(Module.Paramete s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Gas rWeightCalculated nvertToProSim("Ma roject.Modules("Was ject.Modules("Gas ject.Modules("Was</pre>	<pre>sturbine").FuelLHVCalculated/P dules("Waste_Feed").OutputStream(1), 0) dules("Waste_Feed").OutputStream(1), 0) dules("Waste_Feed").OutputStream(1), 0)</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar , ReportUnit("M (1).MolarWeight ulated * lowrate *</pre>	eadA .Rea .Gas
CreateObjec cuteGlobal cuteGlobal ith culation of con OnCalcu fotal elect dule.Parame dule.Parame curbine").F dule.Parame enthalpy", enthalpy")) dule.Paramet ile.Paramet ile.Paramet ile.Paramet	<pre>ct("Scriptin .OpenTextFi .OpenTextFi .OpenTextFi .openTextFi .dlation() cric power o eter(3) = ab eter(5) = ab eter(5) = ab eter(5) = ab eter(6) = Pro uelMolecula eter(8) = Co LHVStream(P) eter(8) = LH eter(8) = LH eter(8) = Pro ameter(9) cer(7) = Pro ter(8) eter(8)</pre>	<pre>g.FileSystemObjec le(Project.Applic) le(Project.Applic) electric power an f steam turbines s(Module.Paramete s(Module.Paramete s(Module.Paramete gas and waste oject.Modules("Gas rWeightCalculated nvertToProSim("Ma roject.Modules("Was ject.Modules("Was ject.Modules("Was</pre>	<pre>sturbine").FuelLHVCalculated/P dules("Waste_Feed").OutputStream(1), 0) dules("Waste_Feed").OutputStream(1).MassF dules(%).fuelLhvcalculated/P dules(%).fuelLHVCalculated/P dules(%).fuelL</pre>	<pre>sion.vbs", 1).R erties.vbs", 1)'')) roject.Modules(ToProSim("Molar , ReportUnit("M (1).MolarWeight ulated * lowrate *</pre>	eadA .Rea .Gas lolar

Module.Parameter(11) = (Module.Parameter(5) / Module.Parameter(6))*100

Integrated Gasification Combined Cycle (IGCC) Plant

Version: March 2024

OnCalculation = true End Function ' Print results Sub OnPrintResults() Module.PrintReport("ELECTRIC POWER") Module.PrintReport("HP Turbine power : "& FormatNumber(ProSimToReport("Power",abs(Module.Parameter(1))),3) & " " & ReportUnit("Power")) : "& Module.PrintReport("LP Turbine power FormatNumber(ProSimToReport("Power",abs(Module.Parameter(2))),3) & " " & ReportUnit("Power")) Module.PrintReport("------Module.PrintReport("Steam Turbines power : " & FormatNumber(ProSimToReport("Power", abs(Module.Parameter(3))),3) & " " & ReportUnit("Power")) Module.PrintReport("") Module.PrintReport("Fuel Turbine power : "& FormatNumber(ProSimToReport("Power",abs(Module.Parameter(4))),3) & " " & ReportUnit("Power")) Module.PrintReport("--: " & Module.PrintReport("Total power produced FormatNumber(ProSimToReport("Power",abs(Module.Parameter(5))),3) & " " & ReportUnit("Power")) Module.PrintReport("") Module.PrintReport(' Module.PrintReport("THERMAL ENERGY POWER (LHV)") Module.PrintReport("LHV of the waste : " & FormatNumber(ProSimToReport("Mass enthalpy",abs(Module.Parameter(8))),3) & " " & ReportUnit("Mass enthalpy"))
Module.PrintReport("LHV of the syngas : " & FormatNumber(ProSimTed) : " & FormatNumber(ProSimToReport("Mass enthalpy",abs(Module.Parameter(9))),3) & " " & ReportUnit("Mass enthalpy")) Module.PrintReport("") Module.PrintReport("Thermal energy of the waste : " & FormatNumber(ProSimToReport("Power",abs(Module.Parameter(7))),3) & " " & ReportUnit("Power")) Module.PrintReport("Thermal energy of the syngas : " & FormatNumber(ProSimToReport("Power",abs(Module.Parameter(6))),3) & " " & ReportUnit("Power")) Module.PrintReport("") Module.PrintReport("") Module.PrintReport("EFFICIENCIES") Module.PrintReport("Gross electrical efficiency (based on LHV waste) : " & FormatNumber(abs(Module.Parameter(10)),3) & " (%)") : " & 'Module.PrintReport("Electrical efficiency (based on LHV syngas) FormatNumber(abs(Module.Parameter(11)),3) & " (%)") End Sub

Note: the LHV of a stream can be calculated using the "LHV / HHV / BMP" scriptlet as follows (the right click to access to the scriptlets can be done on the project, on a group of selected unit operations or on a specific stream):

2.2. <u>Net Power Output and Plant Efficiency</u>

The main results are summarized in the following table:

Simulation results	Notation	Value
HP Turbine power (MW)	А	1.5
LP Turbine power (MW)	В	8.6
Total Turbine power (MW)	C (A+B)	10.1
Gas Turbine power (MW)	D	11.6
Total electric power produced (MW)	E (C+D)	21.7
LHV of the coal (MJ/kg)	F	30
LHV of the syngas (MJ/kg)	G	11.9
Coal mass flowrate (t/h)	н	6.25
Syngas mass flowrate (t/h)	I	10.3
Thermal energy of the coal (MW)	J (H*F)	52
Gross electrical efficiency (%)	K (E/J)	41.8

😍 Win	dows Script (\$XTMO)		
Name:	Electricity output		
Desc:			
Identifie	cation Scripts Report Streams Note:	8	
G	🕥 🦓 🎽 Molar mass 🔻	0 kg/mol 🔻 = 0 g/mol	•
	INLET INFORMATION STREAMS: <u>LP Turbine power</u> <u>HP Turbine power</u> <u>Fuel Turbine power</u> HERMODYNAMIC CALCULATOR : <u>Glo</u>	<u>bal calculator</u>	^
	ELECTRIC POWER HP Turbine power LP Turbine power	: 1 535 714,228 W : 8 623 986,541 W	
	Steam Turbines power	: 10 159 700,770 W	
	Fuel Turbine power	: 11 560 907,485 W	
	Total power produced	: 21 720 608,255 W	
	THERMAL ENERGY POWER (LHV) LHV of the waste LHV of the syngas Thermal energy of the waste Thermal energy of the syngas	: 29 946,167 kJ/kg : 11 868,322 kJ/kg : 51 989 873,925 W : 34 034 945,470 W	
5	EFFICIENCIES Gross electrical efficiency	(based on LHV waste) : 41,779 (%)	~
1 -		ок с	ancel

Results displayed in the "Electricity ouput" windows script

In this example, the gross efficiency is of 42%. In order to compute the net efficiency, the input power consumed for the ASU (compressors consumption), pumps and other supplies have to be taken into account. These electrical consumptions reach up to 10-15% of the total power produced by the plant. Conventional IGCC plants reach between 35 and 45% of net efficiency.

Note: The IGCC plant modelled in this example was simplified which explains the relative "low" gross efficiency. Indeed, the HRSG efficiency, the gasifier efficiency and especially the "Combined cycle" of the IGCC are improvable to reach typical net efficiency up to 40%.

Schematics of an advanced "Combined cycle" of IGCC plant

3. REFERENCES

- [NT172] Technical note NT172 : Scriptlet « Solid compound ».
- [EDW07] Edward S.Rubin, "Technical Documentation: Integrated Gasification Combined Cycle Systems (IGCC) with Carbon Capture and Storage (CCS)", Carnegie Mellon University, 5-2007.
- [ENE17] Manuel Trevino Coca, "Integrated gasification combined cycle technology: IGCC", ELCOGAS, Puertollano, ENERCLUB (Club espanol de la energia).
- [NAY11] Rajul Nayak, Raju K. Mewada, "Simulation of Coal Gasification Process using ASPEN PLUS", INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD – 382 481, 08-10 DECEMBER, 2011.
- [ROW17] R.L. Rowley, W.V. Wilding, J.L. Oscarson, N.F. Giles, DIPPR® Data Compilation of Pure Chemical Properties, Design Institute for Physical Properties, AIChE, New York, NY (2017)