

EXAMPLE PURPOSE
This example illustrates the possibility to link ProSimPlus to Excel: ProSimPlus loads parameters from an Excel file
and exports simulation results to the same Excel file.

Access	Free-Internet	Restricted to ProSim clients	Restricted	Confidential
--------	---------------	------------------------------	------------	--------------

CORRESPONDING PROSIMPLUS FILE	PSPS_EX_EN-Script-Load-&-Export-Excel.pmp3
CORRESPONDING EXCEL FILE	PSPS_EX_EN - data.xls

Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example.

TABLE OF CONTENTS

1.	Proce	ESS FLOWSHEET	3
2.	LOAD	& Export	4
2	.1. Ex	xcel file	4
2	.2. So	cripts	5
	2.2.1.	"Data" Windows Script Module	6
	2.2.2.	Hydrogen Feed	8
	2.2.3.	K101 Compressor	8
	2.2.4.	E102 Heat Exchanger	8
3.	Resul	_TS	9
3.	.1. Pı	roSimPlus simulation file	9
	3.1.1.	Hydrogen Feed	9
	3.1.2.	E102 and E103 Heat Exchangers	10
	3.1.3.	K101 Compressor	10
	3.1.4.	C101 Column	11
3.	.2. Ex	xcel file	12

1. PROCESS FLOWSHEET

The process flowsheet is based on the Cyclohexane Plant flowsheet (refer to the ProSimPlus example "PSPS_EX_EN - Cyclohexane Plant.pmp3" for a complete description of the process).

The parameters to be loaded and exported are presented hereafter.

To be loaded	To be exported
Hydrogen Feed:	E102 Heat Exchanger:
Temperature, pressure and partial molar flowrates	Heat duty required to reach the fixed outlet temperature
E102 Heat Exchanger: Outlet temperature and pressure drop	E103 Heat Exchanger: Heat duty required to reach the fixed outlet
K101 Compressor:	C101 Column:
Exhaust pressure	Condenser and reboiler heat duties

2. LOAD & EXPORT

2.1. Excel file

The parameters used by the ProSimPlus simulation file are described in the sheet named "Data" and presented below.

	A B	C D	E	F	
1					
2					
3 P I	rocess Feed				
4					
5 ⇔	Hydrogen	Feed			
6					
7		Temperature	311	К	
8		Pressure	37,735	atm	
9					
10		Partial molar flowrate	es		
11		Hydrogen	1383,33	kmol/h	
12		Methane	39,13	kmol/h	
13		Benzene	0	kmol/h	
14		Cyclohexane	0	kmol/h	
15					
16					
17 M	lodules				
18					
19 ⇒	⇒ E102: Hea	t Exchanger			
20					
21		Outlet temperature	422	К	
22		Pressure drop	0,34	atm	
23					
24 ⇔		pressor			
25					
26		Exhaust pressure	34	atm	
27					
28					
4	Dat	Results 🕂 🕂			
PRÊT	H				

<u>Remark</u>: the data to be loaded must be in ProSim Units. The full ProSim unit system can be found in

ProSimPlus in the "Unit sytem" menu :

The simulation results are exported to the following sheet, named "Results":

	Α	В	С	D	E	F	
1							
2							
3	Мо	dules					
4							
5	⇔	E102: Hea	at Exchan	ger			
6							
7			Heat dut	У		kcal/h	
8							
9	⇔	E103: Hea	t Exchan	ger			
10							
11			Heat dut	y		kcal/h	
12							
13	⇒	C101: Colu	umn				
14							
15			Condens	ser duty		kcal/h	
16			Reboiler	duty		kcal/h	
17							
18							
	0	▶ Dat	a Resu	lts 🕂			
PRÊ	r f						

2.2. Scripts

A Windows Script Module named "Data" is used to load the data of operating parameters from Excel. Other modules (Hydrogen Feed, E101 and E102 Heat Exchangers...) use then these parameters during calculations.

At the end of the simulation, the Windows Script Module is able to export results to Excel.

2.2.1. "Data" Windows Script Module

The script (used to load and export parameters) is presented below.

<u>Remark</u>: ProSimPlus user must specify the right Excel File location.

In this example: "ExtractFilePath(Project.Filename) & "PSPS_EX_EN - data.xls"" means that the Excel file "PSPS_EX_EN - data.xls" is in the same directory as the simulation file. Of course, this location can be modified.

EXX (XX between 7 and 26 in this example) are the Excel cell addresses of the working parameters (for importation or exportation).

To access the "Script" tab of a module, open the corresponding module definition window and select the "Script" tab as presented below for the "E102" module:

🧶 Co	oler/Heater (\$TCONS1)									
Name:	E102									
Desc:										
Identifi	Identification Parameters Scripts Report Streams Notes Advanced parameters									
= •	■ + Main function declarations +									
▼ P	arameters of the unit operation usable in the script									
1 2 3	' E102 temperature and pressure drop (global parameters) recovery Sub OnCalculationStart()									
4	with Module '> E102 Heat Exchanger									
6	.TemperatureSpecValue = Project.UserValues("E102_T") ' Temperature									
7	.PressureDrop = Project.UserValues("E102_DP") ' Pressure drop end with									
9										
10	End Sub									
< 🗆										
	OK Cancel									

For further information about scripting in ProSimPlus, please refer to the "Windows script" help accessible by pressing "F1" in the script module definition window.

2.2.2. Hydrogen Feed

The script used in the "Hydrogen Feed" module is presented hereafter.

'Temperature, pressure and partial molar flowrates recovery from the "Data" script module Sub OnCalculationStart()

With Module

'--> Hydrogen Feed .OutputStreamTemperatureSpecValue = Project.Modules("Data").parameter(1) .OutputStreamPressureSpecValue = Project.Modules("Data").parameter(2)
For i = 1 to Project.Compounds.Count .OutputStreamCompositionSpecValues(i) = Project.Modules("Data").parameter(2+i) ' Partial molar flowrates Next

Parameters positions in "Data" script module

End With

End Sub

2.2.3. K101 Compressor

The script used in the "K101" module is presented hereafter.

```
' Exhaust pressure recovery from the "Data" script module
Sub OnCalculationStart()
```

' --> K101 Compressor

Module.SpecificationValue = Project.Modules("Data").parameter(12) ' Exhaust pressure

End Sub

2.2.4. E102 Heat Exchanger

The script used in the "E102" module is presented hereafter.

' E102 temperature and pressure drop (global parameters) recovery Sub OnCalculationStart()

With Module

'--> E102 Heat Exchanger

```
.TemperatureSpecValue = Project.UserValues("E102_T") ' Temperature
.PressureDrop = Project.UserValues("E102_DP") ' Pressure drop
End With
```

End Sub

<u>Remark</u>: global parameters (Project.UserValues) can be defined (in this case, they are defined in the

"Data" module) and then used in all of the modules (like here in the "E102" module).

3. RESULTS

3.1. ProSimPlus simulation file

At the end of the simulation, the user can see in the "Report" tab of the different modules the imported data (boxed in green in this document) and the results (boxed in orange in this document) that have been exported to the Excel file.

lame)esc:	: Hydrogen Feed					
Ident	ification Parameters S	Scripts Rep	ort Streams	Notes Adv	anced par	amet
G) 🕗 🦚 🔎 🌶	9				
-		1 1	1			_
F	EQUIPMEN TYP DESCRIPTIC	NT : Hydr PE : Proc DN :	ogen Feed ess feed			
	1 INLET INFORMA Data - Load THERMODYNAMIC CA *** MATERIAL S	TION STRE 8 Export LCULATOR TREAM FRO	AM(S) : : <u>SRK-MHV2</u> M FEED MODU	2-UNIFAC		
Ε	1 INLET INFORMA Data - Load THERMODYNAMIC CA *** MATERIAL S TEMPERATURE PRESSURE	TION STRE 1 & Export LCULATOR TREAM FRO = 31 = 37	AM(S) : : <u>SRK-MHV2</u> M FEED MODU 1.000 (.7350 (2-UNIFAC ILE *** K) ATM)		
[[1 INLET INFORMA Data - Load THERMODYNAMIC CA *** MATERIAL S TEMPERATURE PRESSURE COMPONENT	TION STRE 1 & Export LCULATOR TREAM FRO = 31 = 37 * * *	AM(S) : : <u>SRK-MHV2</u> M FEED MODU 1.000 (.7350 (MOLAR FLOWR (KMOL/HR)	R-UNIFAC ILE *** K) ATM)		
	1 INLET INFORMA Data - Load THERMODYNAMIC CA *** MATERIAL S TEMPERATURE PRESSURE COMPONENT HYDROGEN	TION STRE <u>i & Export</u> LCULATOR TREAM FRO = 31 = 37 * * * * *	AM(S) : : <u>SRK-MHV2</u> M FEED MODU 1.000 (.7350 (MOLAR FLOWR (KMOL/HR) 1383.33	2-UNIFAC ILE *** K) ATM) ATE		
	1 INLET INFORMA Data - Load THERMODYNAMIC CA *** MATERIAL S TEMPERATURE PRESSURE COMPONENT HYDROGEN METHANE	TION STRE i & Export LCULATOR TREAM FRO = 31 = 37 * * * * * *	AM(S) : : <u>SRK-MHV2</u> M FEED MODU 1.000 (.7350 (MOLAR FLOWR (KMOL/HR) 1383.33 39.1300	2-UNIFAC ILE *** K) ATM) ATE		
	1 INLET INFORMA Data - Load THERMODYNAMIC CA *** MATERIAL S' TEMPERATURE PRESSURE COMPONENT HYDROGEN METHANE BENZENE CYCLOHEXANE	TION STRE i & Export LCULATOR TREAM FRO = 31 = 37 * * * * * * * * * * * * *	AM(S) : : <u>SRK-MHV2</u> M FEED MODU 1.000 ((.7350 () MOLAR FLOWR (KMOL/HR) 1383.33 39.1300 0.00000 0.00000	2-UNIFAC ILE *** K) ATM) ATE		
	1 INLET INFORMA Data - Load THERMODYNAMIC CA *** MATERIAL S TEMPERATURE PRESSURE COMPONENT HYDROGEN METHANE BENZENE CYCLOHEXANE TOTAL MOLAR FLO	TION STRE i & Export LCULATOR TREAM FRO = 31 = 37 * * * * * * * * * * * * *	AM(S) : : <u>SRK-MHV2</u> M FEED MODU 1.000 (.7350 (MOLAR FLOWR (KMOL/HR) 1383.33 39.1300 0.00000 1422.46	2-UNIFAC ILE *** K) ATM) ATE (KMOL/	//HR)	

3.1.1. Hydrogen Feed

- • ×

Advanced parameters

3.1.2. E102 and E103 Heat Exchangers

Scooler/Heater (\$TCONS1)	Cooler/Heater (\$TCONS2)
Name: E102	Name: E103
Desc:	Desc:
Identification Parameters Scripts Report Streams Notes Advanced parameters	Identification Parameters Scripts Report Streams Notes Advanced param
	I G O # P P I I L I I
EQUIPMENT : E102	EQUIPMENT : E103
DESCRIPTION :	DESCRIPTION :
1 INLET STREAM(S) : <u>CO4</u>	1 INLET STREAM(S) : <u>COB</u>
1 OUTLET STREAM(S) : <u>CO5</u>	1 OUTLET STREAM(S) : CO9
THERMODYNAMIC CALCULATOR : SRK-MHV2-UNIFAC	THERMODYNAMIC CALCULATOR : SRK-MHV2-UNIFAC
TEMPERATURE : 422.000 (K) PRESSURE : 32.9800 (ATM)	TEMPERATURE : 322.000 (K) PRESSURE : 31.2800 (ATM)
HEAT DUTY : 553202. (KCAL/HR) 🖡	HEAT DUTY : -3.427511E+06 (KCAL/HR)
× III F	()
OK Cancel	OK Cance

3.1.3. K101 Compressor

me: K101			
ISC:			
entification Parameters Scripts Report Str	eams Notes Advan	ced parameters	
3 6) 🚓 🔎 🔊 🗟 🛙	× 🗐		
COMPRESSOR CALCULATION DAT	ΓΔ		
CONFRESSOR CRECOLATION DAT	-		
INPUT DATA			
NUMBER OF COMPRESSION STAGE(S)	- 1		
TSENTROPIC EFFICIENCY	= 0.7500 (-)		
MECHANICAL EFFICIENCY	= 1,0000 (-)		
ELECTRICAL EFFICIENCY	= 1.0000 (-)		
SPECTETED EXHAUST PRESSURE	= 34,0000	(ATM)	
		()	
RESULTS			
ISENTROPIC POWER REQUIRED	= 344697.	(KCAL/HR)	
ISENTROPIC EFFICIENCY	= 0.750000	(-)	
INTERNAL POWER REQUIRED	= 459596.	(KCAL/HR)	
MECHANICAL EFFICIENCY	= 1.00000	(-)	
MECHANICAL POWER REQUIRED	= 459596.	(KCAL/HR)	
ELECTRICAL EFFICIENCY	= 1.00000	(-)	
ELECTRICAL POWER REQUIRED	= 459596.	(KCAL/HR)	
HEAD GENERATED BY THE COMPRESS	SOR = 12721.1	(M)	
OUTLET PRESSURE	= 34.0000	(ATM)	

3.1.4. C101 Column

🧶 Distilla	ation colu	mn (\$COL	.D)							×
Name: C1	101									
Dener										
Desc.										
Identificat	tion Parar	meters So	cripts Report	Streams	Profiles	Notes	Advanced param	neters		
10		0.0								
	2 🚜	PP		<u>a</u>	▦					
			1 1	1						*
STAGE	E TEMP	ERATURE	(DT)	PRESSURE		LTOU	TD FLOW	VAPOR FLOW		
		(K)	(/	(ATM)		(K	MOL/HR)	(KMOL/HR)		
COND	ENSER :									-
	1 275	.65	158.32	15.600		10	.4255	10.4255		=
	433	.97	16,69	15,626		19	.7746	20.8510		
	3 450	.66	2.94	15.653		22	.3828	30.2001		
	4 453	.60	0.62	15.679		22	.9195	32.8083		
	5 454	.22	0.19	15.706		23	.0291	33.3450		
	6 454	.42	0.11	15.732		23	.0569	33.4547		
	7 454	.53	0.10	15.759		23	.0693	33.4825		
8	8 454	.63	25.52	15.785		52	9.510	33.4948		
9	9 480	0.15	3.26	15.811		67	3.911	163.535		
10	8 483	.41	0.49	15.838		69	8.859	307.936		
1	483	.90	0.16	15.864		70	2.603	332.885		
1	2 484	.06	0.12	15.891		70	3.723	336.628		
13	3 484	.17	0.11	15.917		70	4.514	337.748		
14	4 484	.28	0.11	15.944		70	5.261	338.539		
REBOT										
19	5 484	.39		15,970		36	5,975	339,286		
COND	ENSER DU	ITY		=	13984:	1.	(KCAL/HR)			
OVER	HEAD VAP	OR PROD	UCT	=	10.42	55	(KMOL/HR)			
REFLU	JX RATIC)		=	1.0000	90				
CTACK	-				776 44		(1/1101 /110)			
STAG		8, FEED	PLOWRATE	CTTON -	3/6.4	15-02	(KMOL/HR)			
		VAPO	K HOLE FRA	CITON = .	1.301/9	+C-02				
REBO	ILER DUT	Y		=	1.6249	06E+06	(KCAL/HR)			
BOTTO	OM LIQUI	D PRODU	СТ	=	365.9	75	(KMOL/HR)			-
4						1				•
								OK	Canc	el

3.2. Excel file

The results exported to the Excel file can be seen below.

	Α	B	С	D	E	F	
1							
2							
3	Modules						
4							
5	⇔ E102: Heat Exchanger						
6				-			
7			Heat dut	y	553201,697	kcal/h	
8							
9	⇒ E103: Heat Exchanger						
10							
11			Heat dut	y	-3427510,52	kcal/h	
12				-			
13	⇔ C101: Column						
14							
15	1		Condens	er duty	139840,857	kcal/h	
16			Reboiler	duty	1624906,47	kcal/h	
17							
18							
 ✓ Data Results (+) 							
PRÊT 🔠							