

EXEMPLE D'APPLICATION DE PROSIMPLUS OPTIMISATION DU SOLDE D'EXPLOITATION D'UNE UNITE DE PRODUCTION DE LIQUIDES DE GAZ NATUREL

	INTERET DE L'EXEMPLE				
Cet exemple présente l'optimisation sous ProSimPlus du solde d'exploitation d'une unité existante de production de liquides de gaz naturel. Cet exemple illustre notamment l'utilisation combinée du module « Evaluation économique » et du module « Optimisation SQP » de ProSimPlus.					
DIFFUSION Libre-Internet Réservée clients Restreinte Confidentielle					

FICHIERS PROSIMPLUS	PSPS_EX_FR-Optimisation-OPEX-Unite-Production-LGN.pmp3
CORRESPONDANTS	

Il est rappelé au lecteur que ce cas d'utilisation est un exemple et ne doit pas être utilisé à d'autres fins. Bien que cet exemple soit basé sur un cas réel il ne doit pas être considéré comme un modèle de ce type de procédé et les données utilisées ne sont pas toujours les plus exactes disponibles. Fives ProSim ne pourra en aucun cas être tenu pour responsable de l'application qui pourra être faite des calculs basés sur cet exemple.

Energy

Fives ProSim

Siège social : Immeuble Stratège A - 51 rue Ampère - 31670 Labège - FRANCE Tél. : +33 (0)5 62 88 24 30 S.A.S. au capital de 147 800 € - 350 476 487 R.C.S. Toulouse - Siret 350 476 487 00037 - APE 5829C - N° TVA FR 10 350 476 487 www.fivesgroup.com / <u>www.fives-prosim.com</u>

TABLE DES MATIÈRES

1	. I	Mo	DEI	LISATION DU PROCEDE	3
	1.1	•	Pré	ésentation du procédé	3
	1.2	•	Sc	héma du procédé	3
	1.3		Co	nstituants	4
	1.4		Мо	dèle thermodynamique	4
	1.5		Со	nditions opératoires	5
	1.6		Ca	Icul du débit volumique de GNL liquides en Volumique Standard Liquide	10
2	. (Саі	LCL	IL DU SOLDE D'EXPLOITATION DU PROCEDE	13
	2.1	•	Inv	entaire des gains d'exploitation	13
	2.2	•	Inv	entaire des coûts d'exploitation	13
	2.3	•	Sai	isie des gains et coûts d'exploitation dans le module d'évaluation	
	éco	ono	mio	que	14
	2	2.3.′	1.	Alimentation « ALIM GAZ »	16
	2	2.3.2	2.	Sortie « VENTE GAZ »	18
	2	2.3.3	3.	Sortie « GNL LIQUIDES 2 »	19
	2	2.3.4	4.	Compresseur « CMP2 »	20
	2	2.3.	5.	Pompe centrifuge « POM01 »	20
	2	2.3.0	6.	Rebouilleur de la colonne « COL1 »	21
	2.4	•	Pa	ramètres généraux du module d'évaluation économique	22
	2.5	•	Po	sition du module d'évaluation économique dans la séquence de calcul	23
3	. (0р	ТΙМ	ISATION DU SOLDE D'EXPLOITATION DU PROCEDE	24
	3.1	•	De	scription du problème d'optimisation considéré	24
	3.2	•	Co	nfiguration du module d'optimisation	24
4	. I	Res	SUL	TATS DE LA SIMULATION	29
	4.1	•	Со	mmentaires sur les résultats	29
	4.2	•	Bil	ans matière et énergie	29
	4.3	-	Pro	ofils des colonnes	30
5	. I	Вів	LIO	GRAPHIE	33

1. MODELISATION DU PROCEDE

1.1. Présentation du procédé

Cet exemple présente la simulation d'une unité de production de liquides de gaz naturel. Ce procédé extrait les liquides contenus dans le gaz naturel tout en maintenant un pouvoir calorifique d'environ 1 000 Btu/SCF du gaz résiduel destiné à la vente. L'alimentation gaz est refroidie en deux parties, l'une par le mélange du courant de gaz produit après le second flash FL02 avec le distillat vapeur du dééthaniseur, et l'autre par des condensats issus du premier flash FL01. L'alimentation ainsi refroidie est flashée une première fois. Le flux vapeur est détendu dans une turbine avant d'être flashé une seconde fois. Les flux liquides issus de ces deux flashs sont envoyés dans le dééthaniseur. Le résidu produit en pied de colonne constitue les liquides de gaz naturel. Le distillat vapeur mélangé avec la phase vapeur issue du second flash est comprimé et refroidi pour constituer le gaz résiduel destiné à la vente. L'objectif de ce problème est de maximiser le profit généré par cette unité existante (coût des matières premières et des utilités par rapport au coût des produits). Les variables à optimiser sont le taux de partage de l'alimentation et la pression de décharge de la turbine.

L'ensemble des données de ce problème est disponible dans [PRO95].

1.2. Schéma du procédé

1.3. Constituants

Version : Mars 2024

Les constituants pris en considération dans cet exemple sont listés dans le tableau ci-dessous. L'ordre des constituants est à conserver car certains scripts utilisent cet ordre prédéfini.

Nom	Formule chimique	Numéro CAS
Azote	N ₂	7727-37-9
Méthane	CH4	74-82-8
Ethane	C ₂ H ₆	74-84-0
Propane	C ₃ H ₈	74-98-6
Isobutane	iC ₄ H ₁₀	75-28-5
n-Butane	nC4H10	106-97-8
Isopentane	iC₅H ₁₂	78-78-4
n-Pentane	nC ₅ H ₁₂	109-66-0
n-Hexane	C ₆ H ₁₄	110-54-3
n-Heptane	C7H16	142-82-5

1.4. Modèle thermodynamique

Le système considéré contient des hydrocarbures et de l'azote. La pression de travail ne dépasse jamais 100 bars. En conséquence le modèle SRK [SOA72] a été choisi. Les paramètres d'interaction binaire de la base de données de ProSim ont été utilisés. Le volume molaire liquide a été calculé en utilisant la méthode de Lee-Kesler. Optimisation du solde d'exploitation d'une unité de production de liquides de gaz naturel

1.5. <u>Conditions opératoires</u>

L'ensemble des conditions opératoires nécessaires à la définition du procédé est résumé dans cette partie, les données en orange sont des valeurs initiales qui seront modifiées par le module d'optimisation :

✓ Alimentation gaz

		Alimentation gaz
	N ₂	0,62
	CH ₄	89,23
	C ₂ H ₆	6,96
	C ₃ H ₈	2,23
Pourcentage molaire	iC₄H ₁₀	0,29
	nC₄H ₁₀	0,47
	iC₅H ₁₂	0,09
	nC₅H ₁₂	0,07
	nC ₆ H ₁₄	0,03
	nC ₇ H ₁₆	0,01
Débit molaire total (Ibmol/h)		1646,98
Température (°F)		120
Pression (psi)		510

✓ Séparateurs

Paramètres de fonctionnement	Flash FL01	
Type de séparateur	Séparateur diphasique liquide-vapeur	
Pression (psi)	505	
Quantité de chaleur échangée (Btu/h)	Adiabatique	

Paramètres de fonctionnement	Flash FL02	
Type de séparateur	Séparateur diphasique liquide-vapeur	
Température (°F)	Température du mélange adiabatique des alimentations	
Pression (psi)	Pression la plus faible des alimentations	

✓ Colonne

Paramètres de fonctionnement	Colonne à distiller COL1
Type de colonne	Colonne à distiller diphasique avec condenseur partiel
Nombre d'étages théoriques	16
Étages d'alimentation	6 et 12
Débit de distillat vapeur (Ibmol/h)	65
Débit de reflux (Ibmol/h)	40
Quantité de chaleur à fournir au rebouilleur (kcal/h)	Calculée
Pression en tête de colonne (et au plateau 2) (psi)	Pression de la turbine « TUR1 » - 5 psi
Pression en pied de colonne (psi)	Pression de la turbine « TUR1 »
Efficacité des plateaux	1

Pour obtenir le profil de pression spécifié de la colonne, le script suivant a été utilisé :

```
' Chargement de la bibliothèque contenant l'outil de conversion d'unités
with CreateObject("Scripting.FileSystemObject")
  ExecuteGlobal .OpenTextFile(Project.ApplicationPath & "Scripts\UnitConversion.vbs", 1).ReadAll()
end with
' Fonction de création du profil de pression de la colonne
Sub OnCalculationStart()
' Récupération de la valeur de la pression de la turbine "TUR1"
P1 = Project.Modules("TUR1").PressureSpecValue
' Conversion de la perte de charge (valeur : 5 psi) en unité ProSim (atm)
DP = ConvertToProSim("Pressure drop", 5, "psi")
with Module
   ' Pression au plateau 1
   .OverheadPressure
                                   = P1 - DP
   ' Plateau 2
   .IntermediatePressuresStages(1) = 2
   ' Pression du plateau défini précédemment (plateau 2)
   .IntermediatePressuresValues(1) = P1 - DP
end with
End Sub
```

Spécifications complémentaires pour la colonne COL1 :

Spécification		Type de produit	Constituant	Valeur	Action
1:	Débit partiel	Résidu liquide	ETHANE	0,1137 lbmol/h	Débit de distillat vapeur
2:	Débit partiel	Distillat vapeur	PROPANE	1,62 lbmol/h	Débit de reflux

✓ Échangeurs de chaleur généralisés

Nom	Type de spécification	Valeur de la spécification	Perte de charge (psi) 1 ^{er} courant / 2 nd courant
ECH01	Autre : Produit UA	2 666,3 Btu / h / °F	0/0
ECH02	Courant froid : Température de sortie	110 °F	0/0

✓ Échangeur simple

Nom	Quantité de chaleur (Btu/h)	Perte de charge (psi)
ECH03	- Quantité de chaleur au condenseur de COL1 (réchauffement)	0

La quantité de chaleur échangée dans l'échangeur « ECH03 » doit être de signe opposée à la quantité de chaleur au condenseur de la colonne « COL1 » pour respecter les conventions sur les quantités de chaleur utilisées dans ProSimPlus. Pour ce faire, on relie « COL1 » à « ECH03 » par l'intermédiaire d'un manipulateur de courants d'information et de deux courants d'information de la manière suivante :

Les fenêtres de configuration des courants d'information « Inf » et « Inf2 » et du manipulateur d'informations sont les suivantes :

Courant information (\$ISTR)
Nom: Inf
Desc:
Identification Paramètres Notes
Nature de l'information à émettre:
Quantité de chaleur au condenseur (ou au decante
Le segment d'information à émettre sera déterminé automatiquement en fonction des paramètres du module "COL1"
Début: 0 Fin: 0
Nature de l'information à récupérer:
Valeur du courant d'information entrant (Entrée)
Le segment d'information à recevoir sera déterminé automatiquement en fonction des paramètres du module "MAN01"
Début: 0 Fin 0
OK Annuler

Courant information (\$ISTR2)		
Nom: Inf 2		
Desc:		
Identification Paramètres Notes		
Nature de l'information à émettre:		
Valeur du courant d'information sortant (Sortie)		
Le segment d'information à émettre sera déterminé automatiquement en fonction des paramètres du module "MAN01"		
Début: 0 Fin: 0		
Nature de l'information à récupérer:		
Quantité de chaleur		
Le segment d'information à recevoir sera déterminé automatiquement en fonction des paramètres du module "ECH03"		
Début: 0 Fin 0		
OK Annuler		

Manipulateur de courant d'information (\$MA	A
Nom: MAN01 Desc:	
Identification Paramètres Scripts Rapport Co	urants Notes
Sortie = $A * Entrée^P + B$ -	- C
Valeur de A	-1
Valeur de B	0
Valeur de C	0
Puissance	1
Valeur réelle	1
ОК	Annuler

Nom	Température de sortie (°F)	Perte de charge (bar)
ECH04	115	0
ECH05	115	0
ECH06	115	0

✓ Turbine

Paramètres de fonctionnement	Turbine TUR1
Spécification fournie	Pression de décharge fournie par l'utilisateur : 200 psi
Efficacité isentropique	0,95
Efficacité mécanique	1
Efficacité électrique	1

✓ Compresseurs

Paramètres de fonctionnement	Compresseur CMP1	Compresseur CMP2
Spécification fournie	Puissance totale spécifiée : Puissance mécanique de la turbine « TUR1 » *	Pression de refoulement : 510 psi
Efficacité isentropique	0,6519	0,7025
Efficacité mécanique	1	1
Efficacité électrique	1	1

* : fournie par un courant d'information

Remarque : l'ensemble turbine « TUR1 » - compresseur « CMP1 » forme un turbocompresseur.

✓ Pompe

Paramètres de fonctionnement	Pompe POM01
Pression de refoulement (psi)	275
Efficacité volumétrique	0,65
Efficacité mécanique	1
Efficacité électrique	1

✓ Mélangeurs

Paramètres de fonctionnement	Mélangeur MEL01	Mélangeur MEL02
Pression de sortie (psi)	Egale à la plus faible des alimentations	Egale à la plus faible des alimentations

✓ Diviseur de courants

Paramètre de fonctionnement	Diviseur de courants DIV01	
Taux de partage courant ALIM02	0,06	
Pression de sortie (bar)	Egale à la pression d'entrée	

1.6. Calcul du débit volumique de GNL liquides en Volumique Standard Liquide

Dans [PRO95], le prix du débit de sortie de « GNL liquides » est donné en Volume Standard Liquide. Pour déterminer la valeur du débit de « GNL liquides » en Volumique Standard Liquide à partir du débit volumique calculé par ProSimPlus, on utilise la méthode suivante.

On récupère la valeur des paramètres du courant de résidu liquide « GNL1 » sortant de la colonne « COL1 » que l'on injecte dans le module d'alimentation « ALIM GNL2 ». Pour ce faire, le script suivant a été écrit au niveau du module d'alimentation « ALIM GNL2 » :

```
' Récupération des paramètres du courant de résidu liquide "GNL1" de la colonne "COL1"
Sub OnCalculationEnd()
Module.OutputStream(1).Copyfrom(Project.Streams("GNL1"))
End Sub
```

Le module d'alimentation « ALIM GNL2 » est connecté à un module « Séparateur diphasique à une sortie », nommé ici « F_STP ». Dans ce séparateur, les conditions standards ont été imposées : température de 60°F et pression de bulle. Le débit volumique calculé en sortie du séparateur correspond alors au débit en Volumique Standard Liquide.

Pour que ce calcul soit effectué juste après celui de la colonne « COL1 » dans la séquence de calcul, un courant d'information a été ajouté entre le module « COL 1 » et le module « ALIM GNL2 ».

Ce courant sert uniquement à imposer la séquence de calcul et est configuré comme présenté dans la figure suivante. Dans ce qui suit, un courant d'information ainsi configuré sera dit « -1/-1 ».

Courant information (\$ISTR8)		
Nom: Inf 8		
Desc:		
Identification Paramètres Notes		
Nature de l'information à émettre:		
Définie par sa position dans la zone paramètre du		
Saisissez ici les positions de début et de fin définissant le segment d'informations à émettre depuis "COL1"		
Début: -1 Fin: -1		
Nature de l'information à récupérer:		
Définie par sa position dans la zone paramètre du		
Saisissez ici les positions de début et de fin définissant le segment d'informations à recevoir dans "ALIM GNL2"		
Début: -1 Fin -1		
OK Annuler		

Page : 12 / 33

2. CALCUL DU SOLDE D'EXPLOITATION DU PROCEDE

Le module d'évaluation économique de ProSimPlus permet de déterminer le solde d'exploitation d'un procédé, c'està-dire la différence entre le gain d'exploitation et le coût d'exploitation du procédé.

Avant de commencer la configuration du module d'évaluation économique, il convient de bien définir l'inventaire des gains et coûts d'exploitation du procédé étudié.

2.1. Inventaire des gains d'exploitation

Les gains d'exploitation de ce procédé correspondent à :

- la vente de gaz
- la vente des liquides de gaz naturel.

Les données nécessaires au calcul de ces gains sont résumées dans le tableau ci-dessous [PRO95].

Produit	Gain
Alimentation/résidu gaz	3,40 \$/MMBtu
Ethane liquide	0,18 \$/gal
Propane liquide	0,355 \$/gal
iC4 liquide	0,50 \$/gal
nC4 liquide	0,505 \$/gal
C5+ liquide	0,57 \$/gal

La donnée « Alimentation/résidu gaz » permettra de calculer le gain d'exploitation généré par la sortie « VENTE GAZ » et les 5 autres données celui généré par « GNL LIQUIDES 2 ».

2.2. Inventaire des coûts d'exploitation

Les coûts d'exploitation de ce procédé correspondent :

- à l'achat de gaz (module d'alimentation « ALIM GAZ »),
- au coût de l'électricité consommée par le compresseur « CMP2 » et la pompe « POM01 »
- au coût de l'utilité (gaz) employée pour fournir l'énergie nécessaire au rebouilleur de la colonne « COL1 ».

Les données nécessaires au calcul de ces coûts sont résumées dans le tableau ci-dessous [PRO95].

Donnée	Valeur
Alimentation/résidu gaz	3,40 \$/MMBtu
Efficacité brut du fourneau	65 %
Electricité	0,027 \$/kWh

2.3. Saisie des gains et coûts d'exploitation dans le module d'évaluation économique

Dans cet exemple, on souhaite calculer uniquement le solde d'exploitation d'une unité existante sans prendre en compte l'investissement des équipements ni leur maintenance. Pour configurer le module d'évaluation économique en vue de calculer le solde d'exploitation, il faut sélectionner l'onglet « Paramètres » et le sous-onglet « Opérations unitaires ». La fenêtre à configurer est alors la suivante :

Evaluation économique (\$COST1)		
Nom: Evaluation économique 1		
)esc :		
Identification Paramètres Scripts Rapport Notes	Param	ètres avancés
Opérations unitaires Catégories Général Validatio	n	
G D Gobieliere las más descris la barra de descris		
Reinitialiser les prix depuis la base de données	•	
Δ		▲
		Alimentation du procédé
± Investissement		
H Maintenance		
Type de consommation		Matiere premiere
		- Aucun -
		Alimentation du procede
Maintenance		
	•	Matthe constitue
Driv (E#)		
		Compresseur
	•	Compressions centrifuges (MME)
Durée de vie (an)		
+ Prix composite (€)		Compression (MMF)
Maintenance	~	
Prix (€/an)		- Aucun -
Electricité consommée	~	
Prix (€/MWh)		- Aucun -
CMP2	~	Compresseur
D Investissement	~	
Catégorie		Compressions centrifuges (MMF)
Durée de vie (an)		1
Prix composite (€)		Compression (MMF)
Maintenance	~	
Prix (€/an)		- Aucun -
Electricité consommée	•	
Prix (€/MWh)		- Aucun -
COL1	✓	Colonne à distiller
Divestissement	~	▼
		UK Alliuer

La première étape consiste à décocher tous les prix relatifs à l'investissement et à la maintenance, ainsi que tous les modules qui ne sont pas pris en compte dans cet exemple.

Les figures suivantes regroupent tous les modules et les prix considérés dans cet exemple.

E	AL	IM GAZ		Alimentation du procédé	
	ŧ	Investissement			
	Đ	Maintenance			
	÷	Matière consommée	~		
		Type de consommation		Matière première	-
		Prix (€/t)		Coût alimentation gaz (\$/t)	

Ē	CI	ЛР2	•	Compresseur
	÷	Investissement		
	÷	Maintenance		
	Ð	Electricité consommée	✓	
		Prix (€/MWh)		Coût opératoire compresseur (\$/MWh) 🔻 …

E	C	L1	✓	Colonne à distiller	
	ŧ	Investissement			
	÷	Maintenance			
	Đ	Quantité de chaleur au condenseur (utilité)			
	÷	Quantité de chaleur au rebouilleur (utilité)	~		
		Prix (€/MWh)		Coût opératoire rebouilleur (\$/MWh)	• •••

[G	IL LIQUIDES 2	•	Sortie du procédé	
	Ē	Matière produite	✓		
		Type de production		Produit	▼
L		Prix (€/t)		Prix GNL (\$/t)	▼ …

Ē	POM	01	✓	Pompe centrifuge	
	🛨 Inv	restissement			
	🕀 Ma	intenance			
	Ele	ctricité consommée	✓		
	÷	Prix (€/MWh)		Coût de l'électricité (\$///Wh)	• …
		Value		27	

:	VENTE GAZ	 Image: A start of the start of	Sortie du procédé	
	Matière produite	✓		
	Type de production		Produit	▼
	Prix (€/t)		Prix de vente du gaz (\$/t)	▼ …

Ce qui suit décrit pour chaque module considéré dans le calcul du solde d'exploitation, les fonctions de calcul des prix utilisées.

Remarque : la devise de calcul de prix du module d'évaluation économique est l'€ actuel (2016 au moment de la rédaction de cet exemple). Cependant, les coûts de la publication sont donnés en \$. Etant donné que l'année de la devise \$ n'est pas précisée et que le facteur de conversion monétaire n'a pas d'influence dans cet exemple, les coûts ont été renseignés en \$ avec un facteur de conversion de l'€ actuel vers le \$ de 1.

2.3.1. Alimentation « ALIM GAZ »

Le coût de l'alimentation en gaz du procédé est donné dans [PRO95] en \$/MMBtu. Or le module d'évaluation économique attend un coût pour un courant en €/t. Pour effectuer cette conversion, on utilise la formule suivante :

Coût alimentation gaz = Pouvoir calorifique x Volume molaire x Coût gaz x Masse molaire / 106

Avec : Coût alimentation gaz en \$/t

Version : Mars 2024

Pouvoir calorifique en Btu/SCF (SCF = « Standard Cubic Feet »), les données du pouvoir calorifique étant fournies pour chaque constituant dans [PRO95], le pouvoir calorifique du courant est alors la somme pondérée par les fractions molaires des pouvoirs calorifiques de chaque constituant

Volume molaire en SCF/lbmol, on fait l'hypothèse d'un volume molaire constant du gaz dans tout le procédé et valant 379,941 SCF/lbmol [PRO95]

Coût gaz en \$/MMBtu

Masse molaire en t/lbmol

Le script correspondant à ce calcul du coût a été saisi au sein du module d'évaluation économique à l'emplacement suivant :

-	AL	IM GAZ	✓	Alimentation du procédé	
	÷	Investissement			
	Ð.	Maintenance			
	Ė.	Matière consommée	✓		
		Type de consommation		Matière première	-
		Prix (€/t)		Coût alimentation gaz (\$/t)	▼ …

Prix (€/t)	
Description Coût alimentation gaz (\$/	0
Nom de la fonction CoutAlimentationGaz	✓ Prédéfinies
Arguments Source	×
function CoutAlimentati	onGaz
Dim PC(10)	=
PC(1) = 0	' Pouvoir calorifique
PC(2) = 1009	' Pouvoir calorifique
PC(3) = 1768.7	' Pouvoir calorifique
PC(4) = 2517.2	' Pouvoir calorifique
PC(5) = 3252.6	' Pouvoir calorifique
PC(6) = 3262	' Pouvoir calorifique
PC(7) = 3999.7	' Pouvoir calorifique
PC(8) = 4008.7	' Pouvoir calorifique
PC(9) = 4756.1	' Pouvoir calorifique
PC(10) = 5502.8	' Pouvoir calorifique
' Nombre de constitua	nts
NC = Module Outputstr ∢ Ⅲ	eam(1) CompoundCount
	OK Annuler

Optimisation du solde d'exploitation d'une unité de production de liquides de gaz naturel

Version : Mars 2024

Le script saisi dans l'onglet « Source » est le suivant :

Function CoutAlimentationGaz

Dim PC(10)PC(1) = 0' Pouvoir calorifique du constituant 1, Btu/SCF PC(2) = 1009' Pouvoir calorifique du constituant 2, Btu/SCF ' Pouvoir calorifique du constituant 3, Btu/SCF PC(3) = 1768.7' Pouvoir calorifique du constituant 4, Btu/SCF PC(4) = 2517.2' Pouvoir calorifique du constituant 5, Btu/SCF PC(5) = 3252.6' Pouvoir calorifique du constituant 6, Btu/SCF PC(6) = 3262' Pouvoir calorifique du constituant 7, Btu/SCF PC(7) = 3999.7' Pouvoir calorifique du constituant 8, Btu/SCF PC(8) = 4008.7' Pouvoir calorifique du constituant 9, Btu/SCF PC(9) = 4756.1' Pouvoir calorifique du constituant 10, Btu/SCF PC(10) = 5502.8' Nombre de constituants NC = Module.Outputstream(1).CompoundCount ' Dimensionnement du vecteur des fractions molaires Redim FM(NC) ' Fractions molaires des constituants For i = 1 to NC FM(i) = Module.OutputStream(1).PartialMolarFlowrate(i) / Module.OutputStream(1).MolarFlowrate Next ' Masse molaire, t/lbmol MM = Module.OutputStream(1).MolarWeight ' lb/lbmol ' t/lbmol MM = MM / 2204.62' Coût du gaz d'alimentation/résiduel, \$/MMBtu AGCout = 3.4' Pouvoir calorifique du courant d'alimentation, Btu/SCF PouvoirCalorifique = 0.0 For i = 1 to NC PouvoirCalorifique = PouvoirCalorifique + FM(i) * PC(i) Next ' Coût de l'alimentation en gaz, \$/t CoutAlimentationGaz = PouvoirCalorifique * 379.491 * AGCout / 1e6 / MM

End Function

Remarque : dans le module d'évaluation économique, au niveau des champs de saisi des scripts (onglets « Source »), il est possible d'utiliser les fonctions de calculs de propriétés propres à chaque module. Dans le cas de « ALIM GAZ », les propriétés des courants sortant du module ont été utilisées.

2.3.2. Sortie « VENTE GAZ »

Version : Mars 2024

La script saisi pour le calcul du prix de revente de gaz (module « VENTE GAZ ») est analogue à celui utilisé pour « ALIM GAZ ». Seuls les noms de la fonction et de certaines variables ont été remplacés pour plus de clarté : Function PrixVenteGaz

```
Dim PC(10)
                           ' Pouvoir calorifique du constituant 1, Btu/SCF
 PC(1) = 0
                           ' Pouvoir calorifique du constituant 2, Btu/SCF
 PC(2) = 1009
                          ' Pouvoir calorifique du constituant 3, Btu/SCF
 PC(3) = 1768.7
                          ' Pouvoir calorifique du constituant 4, Btu/SCF
 PC(4) = 2517.2
                          ' Pouvoir calorifique du constituant 5, Btu/SCF
 PC(5) = 3252.6
                          ' Pouvoir calorifique du constituant 6, Btu/SCF
 PC(6) = 3262
                          ' Pouvoir calorifique du constituant 7, Btu/SCF
 PC(7) = 3999.7
                          ' Pouvoir calorifique du constituant 8, Btu/SCF
 PC(8) = 4008.7
                          ' Pouvoir calorifique du constituant 9, Btu/SCF
 PC(9) = 4756.1
                          ' Pouvoir calorifique du constituant 10, Btu/SCF
 PC(10) = 5502.8
  ' Nombre de constituants
 NC = Module.Outputstream(1).CompoundCount
  ' Dimensionnement du vecteur des fractions molaires
  Redim FM(NC)
  ' Fractions molaires des constituants
  For i = 1 to NC
   FM(i) = Module.OutputStream(1).PartialMolarFlowrate(i) / Module.OutputStream(1).MolarFlowrate
 Next
  ' Masse molaire, t/lbmol
 MM = Module.OutputStream(1).MolarWeight
                                                ' lb/lbmol
 MM = MM / 2204.62
                                                ' t/lbmol
  ' Prix du gaz d'alimentation/résiduel, $/MMBtu
 AGPrix = 3.4
  ' Pouvoir calorifique, Btu/SCF
 PouvoirCalorifique = 0.0
  For i = 1 to NC
   PouvoirCalorifique = PouvoirCalorifique + FM(i) * PC(i)
 Next
  ' Prix de vente du gaz, $/t
 PrixVenteGaz = PouvoirCalorifique * 379.491 * AGPrix / 1e6 / MM
End Function
```

Remarque : dans le module d'évaluation économique, chaque sortie du procédé est définie au niveau du module auquel cette sortie est reliée. La sortie « VENTE GAZ » est par exemple définie au niveau du module « ECH05 ». Ainsi, pour avoir accès à une propriété d'une sortie (débit, masse molaire...), il faut déterminer l'indice du courant reliant le module et la sortie. La sortie « VENTE GAZ » correspond par exemple à la sortie 1 du module « ECH05 ». La syntaxe pour accéder au débit molaire total de la sortie « VENTE GAZ » est alors :

Module.OutputStream(1).MolarFlowrate

2.3.3. Sortie « GNL LIQUIDES 2 »

Version : Mars 2024

Pour calculer le prix de revente de cette sortie, la donnée fournie est ici le prix volumique des différents constituants ou groupe de constituants du courant. Afin de respecter l'unité requise par le module d'évaluation économique (€/t pour les alimentations/sorties), il faut convertir ce prix volumique en prix massique en déterminant la masse volumique du mélange.

Le script utilisé pour déterminer le prix de vente est le suivant : Function PrixGNL

```
Dim C(6)
                  ' Coût des liquides C2, $/gal
C(2) = 0.18
                  ' Coût des liquides C3, $/gal
C(3) = 0.355
                  ' Coût des liquides IC4, $/gal
C(4) = 0.5
                  ' Coût des liquides NC4, $/gal
C(5) = 0.505
C(6) = 0.57
                  ' Coût des liquides C5+, $/gal
' Création du calculator, copie du calculator du courant de sortie de F_STP (GNL1b)
dim calc
set calc = Module.Outputstream(1).VBSCalculator
' Récupération de la température, de la pression et du nombre de constituants dans GNL1b
T = Module.Outputstream(1).Temperature
P = Module.Outputstream(1).Pressure
NC = Module.Outputstream(1).CompoundCount
' Dimensionnement des vecteurs
Redim FM(NC-1)
Redim FMPure(NC-1)
Redim VmLPure(NC-1)
Redim FV(NC-1)
' Initialisation de la norme du vecteur de fractions volumiques
NormFV = 0
' Calcul des fractions molaires de GNL1b
For i = 1 to NC
  FM(i-1) = Module.OutputStream(1).PartialMolarFlowrate(i)/Module.OutputStream(1).MolarFlowrate
Next
' Calcul du volume molaire liquide de GNL1b
VmL = calc.PCalcVmL(T,P,FM)
' Calcul des volumes molaires des corps purs, des fractions volumiques non normées
' et de la norme du vecteur de fractions volumiques
For i = 1 to NC
  VmLPure(i-1) = calc.Compounds.Items(i-1).LiquidMolarVolumeAtT(T)
  FV(i-1) = FM(i-1) * VmLPure(i-1) / VmL
  NormFV = NormFV + FV(i-1)
Next
' Normalisation des fractions volumiques
' (ceci revient à calculer les fractions volumiques avec l'hypothèse "mélange idéal")
For i = 1 to NC
  FV(i-1) = FV(i-1) / NormFV
Next
' Fraction volumique des liquides C5+ dans le GNL
```

FVC5plus = 0.0

Optimisation du solde d'exploitation d'une unité de production de liquides de gaz naturel

Page : 20 / 33

```
For i = 7 to NC
  FVC5plus = FVC5plus + FV(i-1)
Next
' Coût volumique du GNL, $/gal
CoutVolumiqueGNL = FV(2) * C(2) + FV(3) * C(3) + FV(4) * C(4) + FV(5) * C(5) + FVC5plus * C(6)
' Masse volumique, t/gal
                                                     ' kg/m3
MasseVolumique = Module.OutputStream(1).Density
                                                     ' t/m3
MasseVolumique = MasseVolumique / 1000
                                                     ' t/gal
MasseVolumique = MasseVolumique / 264.172
' Prix GNL, $/t
PrixGNL = CoutVolumiqueGNL / MasseVolumique
' Destruction du calculator
set calc = nothing
```

End Function

Version : Mars 2024

2.3.4. Compresseur « CMP2 »

L'utilité utilisée pour faire fonctionner le compresseur « CMP2 » est le gaz naturel. L'efficacité de l'apport de l'énergie est de 40 %.

Le script utilisé pour calculer le coût de fonctionnement du compresseur est le suivant :

Function CoutOperatoireCompresseur

```
' Coût du gaz d'alimentation/résiduel, $/MMBtu
AGCout = 3.4
' Coût opératoire du compresseur (efficacité : 40 %), $/MMBtu
CoutOperatoireCompresseur = AGCout / 0.4
' Coût opératoire du compresseur, $/MWh
CoutOperatoireCompresseur = CoutOperatoireCompresseur * 3600 / 1054.35
```

End Function

2.3.5. Pompe centrifuge « POM01 »

La pompe centrifuge « POM01 » fonctionne à l'énergie électrique dont le coût en \$/kWh est fourni. Le coût en \$/MWh (unité attendue par le module d'évaluation économique) est simplement ce coût multiplié par 1000 soit 27 \$/MWh.

Pour saisir ce coût, il faut cliquer sur l'icône 💌 et sélectionner « Constant » pour prix constant. La valeur est à saisir en face du champ « Constante » qui apparait alors.

POM01		Pompe centrifuge	
Investissement			
Maintenance			
Electricité consommée	•		
⊡ Prix (€/MWh)		Valeur constante	
Constante		27	Aucun (effacer)
TUR1		Turbine	Constant
D Investissement			Pourcentage du prix réel non monté
Haintenance			Pourcentage du prix réel monté
Electricité produite			5 1

2.3.6. Rebouilleur de la colonne « COL1 »

Pour calculer le coût de fonctionnement du rebouilleur de la colonne « COL1 », il faut sélectionner l'icône ··· du champ en surbrillance bleu visualisable sur la figure suivante :

Þ	COL1	~	Colonne à distiller
	Investissement		
	Haintenance		
	Quantité de chaleur au condenseur (utilité)		
	Quantité de chaleur au rebouilleur (utilité)	•	
	Prix (€/MWh)		Coût opératoire rebouilleur (\$/MWh)

L'utilité utilisée pour faire fonctionner le rebouilleur est le gaz naturel. L'efficacité de l'apport de l'énergie est de 65 %.

Le script utilisé pour calculer le coût de fonctionnement du rebouilleur est le suivant :

Function CoutOperatoireRebouilleur

```
' Coût du gaz d'alimentation/résiduel, $/MMBtu
AGCout = 3.4
' Coût opératoire du rebouilleur (efficacité : 65 %), $/MMBtu
CoutOperatoireRebouilleur = AGCout / 0.65
' Coût opératoire du rebouilleur, $/MWh
CoutOperatoireRebouilleur = CoutOperatoireRebouilleur * 3600 / 1054.35
```

End Function

2.4. Paramètres généraux du module d'évaluation économique

L'ensemble des paramètres généraux à renseigner dans l'onglet « Général » du module d'évaluation économique est visible sur la figure suivante :

Evaluation économique (\$COST)		23
Nom: Evaluation économique		
Desc:		
Identification Paramètres Scripts Rapport Profils Notes Paramètres avancés		
Opérations unitaires Catégories Général Validation		
Mode de calcul On-run Devises S		
Post-run Post-run Facteur de conversion de € vers devise du rapport		
Paramètres économiques		
Taux d'actualisation 0 %	uel de l'usir	ie
Taux d'imposition 0 % Horizon de temps		
Fonds de roulement 0 € 1 an(s)		
Paramètres avancés		
ОК	An	nuler

Ce qui suit est la justification des paramètres renseignés :

Mode de calcul :

Le mode de calcul « On-run » permet d'effectuer l'évaluation économique au cours de la simulation ce qui est indispensable pour cet exemple puisque l'on souhaite coupler cette évaluation économique à un module d'optimisation.

Paramètres économiques :

Dans cet exemple, il s'agit uniquement de déterminer le solde d'exploitation. Le taux d'actualisation, le taux d'imposition et le fonds de roulement étant des paramètres utilisés dans l'élaboration de l'échéancier, ils ne sont pas utilisés et leur valeur est laissée par défaut à 0.

Devise :

Comme précisé dans une remarque précédente, les prix ayant été renseignés directement en \$ de la référence [PRO95], le facteur de conversion a été fixé à 1 et le symbole de la devise correspondante fixé à « \$ ».

Temps :

Par défaut, le temps de fonctionnement annuel de l'usine correspond à une marche ininterrompue de l'usine 24h/24h et 7j/7j soit 8766 h/an. Dans cet exemple, on souhaite raisonner en bénéfice journalier. Pour ce faire, la solution choisie a été de saisir un fonctionnement annuel de l'usine de 24h (soit une journée).

L'horizon de temps étant là encore un paramètre utilisé dans l'élaboration de l'échéancier, qui n'est pas considéré dans cet exemple, la valeur par défaut de 1 an a été laissée.

Remarque : la configuration de l'onglet « Catégories » n'est pas évoquée ici car il n'est utilisé que pour le calcul de l'investissement.

2.5. Position du module d'évaluation économique dans la séquence de calcul

Pour calculer correctement les gains et coûts d'exploitation, le module d'évaluation économique doit être placé de manière adéquate dans la séquence de calcul c'est-à-dire après les modules suivants :

- « F_STP »
- « POM01 »
- « ECH05 »

La solution choisie pour parvenir à ce résultat est de relier les modules précédents (ou ceux placés après dans la séquence de calcul) par des courants « -1/-1 » au module d'évaluation économique. Pour des raisons de lisibilité du flowsheet, la configuration suivante a été sélectionnée :

Remarque : les courants d'information « Inf9 », « Inf3 » et « Inf4 » sont en « -1/-1 ».

3. OPTIMISATION DU SOLDE D'EXPLOITATION DU PROCEDE

3.1. Description du problème d'optimisation considéré

L'objectif est de maximiser le solde d'exploitation en jouant sur deux paramètres du procédé :

- le taux de partage du courant « ALIM02 » sortant du diviseur de courant « DIV01 »

- la pression de décharge de la turbine « TUR1 »

3.2. Configuration du module d'optimisation

Le module d'optimisation minimise la grandeur définie comme étant sa fonction objectif. Or, on cherche ici à maximiser le solde d'exploitation. Il faut donc définir comme fonction objectif du module d'optimisation « Moins » le solde d'exploitation. Pour ce faire, on relie le module d'évaluation économique au module d'optimisation en interposant un manipulateur de courant d'information de la façon suivante :

Les courants d'information entrant et sortant du manipulateur « MAN02 » sont configurés de la façon suivante :

Courant	information (\$ISTR11)
Nom: Inf 1	1
Desc:	
Identificatio	n Paramètres Notes
-Nature (le l'information à émettre:
	Solde global d'exploitation
aut	e segment d'information à émettre sera déterminé omatiquement en fonction des paramètres du module "Evaluation économique"
Dél	ut: 0 Fin: 0
-Nature (le l'information à récupérer:
	Valeur du courant d'information entrant (Entrée)
L aut	e segment d'information à recevoir sera déterminé omatiquement en fonction des paramètres du module "MAN02"
Dél	out: 0 Fin 0
	OK Annuler

Version : Mars 2024

Courant information (\$ISTR5)		
Nom: Inf 5		
Desc:		
Identification Paramètres Notes		
Nature de l'information à émettre:		
Valeur du courant d'information sortant (Sortie)		
Le segment d'information à émettre sera déterminé automatiquement en fonction des paramètres du module "MAN02"		
Début: 9 Fin: 9		
Nature de l'information à récupérer:		
Automatique		
Le segment d'information à recevoir sera déterminé automatiquement en fonction des paramètres du module "OPTI"		
Début: 0 Fin 0		
OK Annuler		

Pour que la fonction objectif envoyée vers le module d'optimisation soit bien égale à « Moins » le solde d'exploitation, on configure le manipulateur d'information de la façon suivante :

Anipulateur de courant d'information (\$1	MA 🗆 🔍 🗙
Nom: MAN02 Desc:	
Identification Paramètres Scripts Rapport (Courants Notes
$Sortie = A * Entrée^P + B$	B-C
Valeur de A	-1
Valeur de B Valeur de C	0
Puissance Valeur réelle Valeur entiere	1
	DK Annuler

Les courants d'information utilisés sont configurés de la façon suivante :

lom: Inf 6	Nom: Inf 7
Desc:	
Identification Paramètres Notes	Identification Paramètres Notes
Nature de l'information à émettre:	Nature de l'information à émettre:
Automatique	Automatique
Le segment d'information à émettre sera déterminé automatiquement en fonction des paramètres du module "OPTI"	Le segment d'information à émettre sera déterminé automatiquement en fonction des paramètres du modul "OPTI"
Nature de l'information à récupérer:	Nature de l'information à récupérer:
Taux de partage des courants sortants	Valeur de la spécification
Saisissez ici les positions de début et de fin définissant le segment d'informations à recevoir dans "DIV01"	Le segment d'information à recevoir sera déterminé automatiquement en fonction des paramètres du modu "TUR1"
Début: 2 Fin 2	Début: 0 Fin 0

Les paramètres à saisir dans la fenêtre de définition du module d'optimisation sont en partie présentés sur la figure suivante :

Optimisation (\$OPTI) Nom: OPTI			
Desc:			
Identification Paramètres Scripts	Rapport Courants Note	s Paramètres avancés	
Propriétés de l'optimiseur Variables d'action			
Méthode Programmation quadratiq	Bornes et incréments des variables d'action		
Nombre de périodes	1	Variables itératives des courants contrôlés	
Nombre de contraintes inégalité	0	📝 Température	
Nombre de pas de repos	2	Pression	
Ordre pour le calcul du gradient	1	Courants contrôlés	
Normalisation des contraintes		ALIM00	
Paramètres de la méthode SQP		ALIM02	
Nombre maximum d'itérations	200	ALM04	
Paramètre Kuhn Tucker	0,005	EC01	
Violation de contrainte	0,001	4 III	
Non évolution du critère	0,0001	Tous Aucun	
Non évolution des variables	0,0001	Bornes et incréments des	
		Températures Pressions Débits partiels	
Imprimer		Test d'arrêt	
Impression toutes les	1 itérations	Nombre maximum de passages dans le RCM 1000	
		OK Annuler	

Remarque : le paramètre de Kuhn Tucker dépend notamment de l'ordre de grandeur de la dérivée de la fonction objectif par rapport aux différentes variables d'action. Il est donc important, comme c'est le cas ici, d'ajuster la valeur de ce paramètre en fonction de cet ordre de grandeur.

Au niveau du module d'optimisation, il est important de spécifier les courants coupés (ou contrôlés) de la simulation. Le courant « ALIM05 » a été choisi comme courant coupé, celui-ci étant initialisé avec les caractéristiques suivantes :

		Courant coupé « ALIM05 »
Débit molaire (Ibmol/h)	N ₂	10,2112
	CH₄	1469,6
	C ₂ H ₆	114,63
	C ₃ H ₈	36,7276
	iC₄H ₁₀	4,77623
	nC ₄ H ₁₀	7,74079
	iC₅H ₁₂	1,48228
	nC₅H ₁₂	1,15288
	nC ₆ H ₁₄	0,494093
	nC ₇ H ₁₆	0,164698
Température (°F)		-40
Pression (psi)		510

Les débits molaires partiels du courant « ALIM05 » ont été initialisés avec ceux du courant d'alimentation « ALIM01 » car, par simple bilan matière, on peut constater que ceux-ci sont identiques.

A ces paramètres s'ajoutent les bornes des variables d'action présentés sur la figure ci-dessous :

Bornes et incréments des	variables d'action		
Bornes Incréments			
Valeurs des bornes			
Automatique			
Oétaillées			
Communes			
]-inf,0[(négatives)			
]0,+inf[(positives)			
Courant	Min	Мах	
Inf 6	0.01	0.15	
Inf 7	10	18	
L			╣
		OK Annuler	

4. RESULTATS DE LA SIMULATION

4.1. Commentaires sur les résultats

L'optimisation donne un solde d'exploitation optimal de 661,534 \$/jour pour un taux de partage du courant « ALIM02 » de 0,15 et une pression de décharge pour la turbine « TUR1 » de 15,92 atm (233,92 psi).

Remarque : le message d'avertissement en rapport avec le module d'évaluation économique qui apparaît à la fin de la simulation informe l'utilisateur qu'un calcul n'a pas pu être effectué au sein du module d'évaluation économique. En l'occurrence, il s'agit du calcul du taux de rentabilité interne qui est un résultat qui ne concerne pas cet exemple puisque l'investissement du procédé et l'échéancier correspondant ne sont pas considérés.

4.2. Bilans matière et énergie

Ce document ne présente que les bilans matière et énergie sur les courants entrées/sorties du procédé. ProSimPlus fournit cependant des résultats complets sur tous les courants et sur chaque opération unitaire.

Courants		ALIM00	GNL1b	RG08
De		ALIM GAZ	F_STP	ECH05
Vers		DIV01	GNL LIQUIDES 2	VENTE GAZ
Débits partiels		lbmol/h	lbmol/h	lbmol/h
NITROGEN		10,21	1E-08	10,21
METHANE		1469,60	3E-04	1469,60
ETHANE		114,63	0,11	114,52
PROPANE		36,73	24,09	12,64
ISOBUTANE		4,78	4,48	0,30
n-BUTANE		7,74	7,49	0,26
ISOPENTANE		1,48	1,48	0,01
n-PENTANE		1,15	1,15	3E-03
n-HEXANE		0,49	0,49	2E-05
n-HEPTANE		0,16	0,16	4E-07
Débit total	lbmol/h	1646,98	39,45	1607,52
Débit total	bbl/h	3376,36	10,61	3281,83
Température	°F	120	60	115
Pression	psi	510,0	75,1	510,0

Optimisation du solde d'exploitation d'une unité de production de liquides de gaz naturel

4.3. Profils des colonnes

Version : Mars 2024

Les profils de colonne sont obtenus après la simulation dans la fenêtre de configuration de la colonne, sous l'onglet « Profils ». Un double-clic sur le profil souhaité génère le graphique. Il est à noter que, dans ProSimPlus, les étages des colonnes sont numérotés de haut en bas (le premier plateau correspond au condenseur, le dernier au rebouilleur).

Colonne à distiller (\$COLD)			
Nom: COL1 Desc:			
Identification Paramètres Scripts Rapport Courants Profiles Notes Paramètres avancés			
Nom	Description		
COL1 - Profil de température COL1 - Profil de pression COL1 - Fractions molaires liquide COL1 - Fractions molaires vapeur COL1 - Fractions massiques liquide COL1 - Fractions massiques vapeur COL1 - Enthalpies COL1 - Débits molaires COL1 - Débits massiques COL1 - Débits volumiques	Profil de température dans la colonne Profil de pression dans la colonne Profil des fractions molaires liquide dans la colonne Profil des fractions massiques liquide dans la colonne Profil des fractions massiques vapeur dans la colonne Profil des fractions massiques vapeur dans la colonne Profil des enthalpies dans la colonne Profil des débits molaires dans la colonne Profil des débits massiques dans la colonne Profil des débits volumiques dans la colonne		
Graphe Valeurs			
	0	< Annuler	

Colonne « COL1 »

Version : Mars 2024

5. BIBLIOGRAPHIE

[PRO95] Turbo-Expander Gas Plant Optimization

PRO/II Application Briefs (August 1995)