

INTERET DE L'EXEMPLE
Cet exemple illustre la possibilité de lier ProSimPlus à Excel : ProSimPlus charge des paramètres à partir d'un
fichier Excel et exporte des résultats vers le même fichier Excel.

DIFFUSION I Libre-Internet	Restreinte	Confidentielle
----------------------------	------------	----------------

FICHIER PROSIMPLUS CORRESPONDANT	PSPS_EX_FR-Script-Chargement-et-Export-Excel.pmp3
FICHIER EXCEL CORRESPONDANT	PSPS_EX_FR - donnees.xls

Il est rappelé au lecteur que ce cas d'utilisation est un exemple et ne doit pas être utilisé à d'autres fins. Bien que cet exemple soit basé sur un cas réel il ne doit pas être considéré comme un modèle de ce type de procédé et les données utilisées ne sont pas toujours les plus exactes disponibles. Fives ProSim ne pourra en aucun cas être tenu pour responsable de l'application qui pourra être faite des calculs basés sur cet exemple.

Energy

Fives ProSim

Siège social : Immeuble Stratège A - 51 rue Ampère - 31670 Labège - FRANCE Tél. : +33 (0)5 62 88 24 30 S.A.S. au capital de 147 800 € - 350 476 487 R.C.S. Toulouse - Siret 350 476 487 00037 - APE 5829C - N° TVA FR 10 350 476 487 www.fivesgroup.com / <u>www.fives-prosim.com</u>

TABLE DES MATIÈRES

1. Sc	HEM	IA DU PROCEDE	3
2. Cr	IARG	BEMENT & EXPORT	4
2.1.	Fic	chier Excel	4
2.2.	Sc	cripts	5
2.2	2.1.	Module Windows Script « Donnees »	6
2.2	2.2.	Alimentation Hydrogène	8
2.2	.3.	Compresseur K101	8
2.2	2.4.	Echangeur de chaleur E102	8
3. Re	SUL	TATS	9
3.1.	Fic	chier de simulation ProSimPlus	9
3.1	.1.	Alimentation Hydrogène	9
3.1	.2.	Echangeurs de chaleur E102 et E103	10
3.1	.3.	Compresseur K101	10
3.1	.4.	Colonne C101	11
3.2.	Fic	chier Excel	12

1. SCHEMA DU PROCEDE

Le schéma de procédé est basé sur celui de l'Unité de Production de Cyclohexane (se référer à l'exemple ProSimPlus « PSPS_EX_FR - Unité Production Cyclohexane » pour une description complète du procédé).

Les paramètres à charger et à exporter sont présentés ci-après.

A charger	A exporter
Alimentation Hydrogène :	Echangeur de chaleur E102 :
Température, pression et débits molaires partiels	Quantité de chaleur requise pour atteindre la température de sortie spécifiée
Echangeur de chaleur E102 : Température de sortie et perte de charge	Echangeur de chaleur E103 : Quantité de chaleur requise pour atteindre la température de sortie spécifiée
Compresseur K101 : Pression de refoulement	Colonne C101 : Quantité de chaleur au condenseur et au rebouilleur

2. CHARGEMENT & EXPORT

2.1. Fichier Excel

Les paramètres utilisés par le fichier de simulation ProSimPlus sont décrits dans la feuille nommée « Donnees » et présentée ci-dessous.

	Α	В	С	D	E	F			
1									
2									
3	Alin	nentation F	Procéde	é					
4									
5	⇒ Alimentation Hydrogène								
6	1								
7			Temp	érature	311	К			
8			Press	ion	37,735	atm			
9									
10			Débits	s molaires partiels					
11				Hydrogène	1383,33	kmol/h			
12				Méthane	39,13	kmol/h			
13				Benzène	0	kmol/h			
14			(Cyclohexane	0	kmol/h			
15									
16									
17	Мо	dules							
18									
19	⇔	E102 : Ec	hange	ur de chaleur					
20									
21			Temp	érature de sortie	422	К			
22			Perte	de charge	0,34	atm			
23									
24	⇔	K101 : Co	mpress	seur					
25									
26			Press	ion de refoulement	34	atm			
27									
28									
	•	Do	onnees	Resultats (+)					
PRÊ	г								
	- L	_							

Remarque : les données pour le chargement doivent être en unités ProSim. Le système d'unités

ProSim est consultable dans ProSimPlus dans le menu « Systèmes d'unités » :

Les résultats de simulation sont exportés vers la feuille suivante, nommée « Resultats ».

2.2. Scripts

Un module Windows Script nommé « Donnees » est utilisé pour charger les données de paramètres opératoires à partir d'Excel. D'autres modules (Alimentation Hydrogène, échangeurs de chaleur E101 et E102) utilisent ensuite ces paramètres durant les calculs.

A la fin de la simulation, le module Windows Script exporte des résultats vers Excel.

2.2.1. Module Windows Script « Donnees »

Le script utilisé pour charger et exporter les paramètres est présenté ci-après.

' Renvoie le chemin du dossier contenant le fichier spécifié (sans le délimiteur "\") Function ExtractFilePath(Filename)	
Set fileSystem = CreateObject("Scripting.FileSystemObject") Set file = fileSystem.GetFile(Filename) ExtractFilePath = fileSystem.GetParentFoldername(file) & "\" Set file = Nothing Set fileSystem = Nothing	Extraction du chemin du fichier
End Function	
Dim Excel, Workbook	
Sub OnSimulationStart()	
' Excel : Création de l'application Set Excel = CreateObject("Excel.Application")	Début de la simulation :
' Fichier de données : Ouverture Set Workbook = Excel.Workbooks.Open(ExtractFilePath(Project.Filename) &	- Création de l'objet Excel
End Sub	- Ouverture du fichier Excel
Chargement des données Function OnCalculation()	
With Module	
'> Alimentation Hydrogène .parameter(1) = WorkBook.WorkSheets("Donnees").Range("E7") ' Température .parameter(2) = WorkBook.WorkSheets("Donnees").Range("E8") ' Pression	Calcul des modules :
For i = 1 to Project.Compounds.Count .parameter(2+i) = WorkBook.WorkSheets("Donnees").Range("E"& 10+i) ' Débits partiels Next	- Chargement des données
'> E102 : Echangeur de chaleur Project.UserValues("E102_T") = WorkBook.WorkSheets("Donnees").Range("E21") 'Température Project.UserValues("E102_DP") = WorkBook.WorkSheets("Donnees").Range("E22") 'Perte de charge	
'> K101 : Compresseur .parameter(12) = WorkBook.WorkSheets("Donnees").Range("E26") ' Pression de refoulement	
End With Oncalculation = True	
End Function	
' Export des données Sub OnSimulationEnd()	
'> E102 : Chaleur échangée WorkBook.WorkSheets("Resultats").Range("E7") = Project.modules("E102").HeatDuty	
'> E103 : Chaleur échangée WorkBook.WorkSheets("Resultats").Range("E11") = Project.modules("E103").HeatDuty	Fin de la simulation :
'> C101 : Chaleur au condenseur (Qc) et au rebouilleur (Qb) WorkBook.WorkSheets("Resultats").Range("E15") = Project.modules("C101").Qc WorkBook.WorkSheets("Resultats").Range("E16") = Project.modules("C101").Qb	- Export des données
' Fichier de données : Sauvegarde et fermeture	- Fichier Excel :
WorkBook.Save WorkBook Close	Sauvegarde et fermeture
Set Workbook = Nothing	
' Excel : Sortie Excel.quit	- Object Excel : Libération
' Excel : Libération de l'application Set Excel = Nothing	
End Sub	

<u>Remarque</u> : l'utilisateur ProSimPlus doit spécifier correctement l'emplacement du fichier Excel.

Dans cet exemple, « ExtractFilePath(Project.Filename) & "PSPS_EX_FR - donnees.xls" » signifie que le fichier Excel « PSPS_EX_FR - donnees.xls » est dans le même répertoire que le fichier de simulation. Bien entendu, cet emplacement peut être modifié.

Les expressions EXX (XX entre 7 et 26 dans cet exemple) sont les adresses des cellules des paramètres opératoires (pour l'importation ou l'exportation).

Pour avoir accès à l'onglet « Script » d'un module, il faut ouvrir la fenêtre de définition du module correspondant et sélectionner l'onglet « Script » comme présenté ci-dessous dans le cas du module « E102 » :

Consignateur de température (\$TCONS1)	
Nom: E102	
Desc:	
Identification Paramètres Scripts Rapport Courants Notes Paramètres avancés	
Paramètres de l'opération unitaire utilisables dans le script	
<pre>1 ' Récupération de la température et de la perte de charge d'E102 (paramèt 2 Sub OnCalculationStart() 3 with Module 5 '> Echangeur de chaleur E102 6 .TemperatureSpecValue = Project.UserValues("E102_T") ' Température 7 .PressureDrop = Project.UserValues("E102_DP") ' Perte de charg 8 end with 9 10 End Sub</pre>	res globaux) 🔺
<	*
ОК	Annuler

Pour obtenir des informations supplémentaires sur le script dans ProSimPlus, se référer à l'aide « Windows script » accessible en pressant « F1 » dans la fenêtre de définition du module script.

Le script utilisé dans le module « Alimentation Hydrogene » est présenté ci-après.

```
'Récupération de la température, de la pression et des débits molaires partiels à partir du module
script "Donnees"
Sub OnCalculationStart()
 With Module
  --> Alimentation Hydrogène
                                                                                  ' Température
  .OutputStreamTemperatureSpecValue = Project.Modules("Donnees").parameter(1)
                                                                                  ' Pression
  .OutputStreamPressureSpecValue = Project.Modules("Donnees").parameter(2)
  For i = 1 to Project.Compounds.Count
   .OutputStreamCompositionSpecValues(i) = Project.Modules("Donnees").parameter(2+i) / Débits
molaires partiels
  Next
End With
                                            Positions des paramètres dans le module script « donnees »
```

End Sub

2.2.3. Compresseur K101

Le script utilisé dans le module « K101 » est présenté ci-après.

```
'Récupération de la pression de refoulement à partir du module script "Donnees"
Sub OnCalculationStart()
```

' --> Compresseur K101

Module.SpecificationValue = Project.Modules("Donnees").parameter(12) ' Pression de refoulement

End Sub

2.2.4. Echangeur de chaleur E102

Le script utilisé dans le module « E102 » est présenté ci-après.

```
'Récupération de la température et de la perte de charge d'E102 (paramètres globaux)
Sub OnCalculationStart()
```

With Module

```
'--> Echangeur de chaleur E102
 .TemperatureSpecValue = Project.UserValues("E102_T") ' Température
 .PressureDrop = Project.UserValues("E102 DP")
End With
```

' Perte de charge

End Sub

Remarque : des paramètres globaux (Project.UserValues) peuvent être définis (dans ce cas, ils sont définis dans le module « Donnees ») pour pourvoir ensuite être utilisés dans tous les modules (comme dans le module « E102 » ici).

3. RESULTATS

3.1. Fichier de simulation ProSimPlus

A la fin de la simulation, l'utilisateur peut visualiser dans l'onglet « Rapport » des différents modules les données importées (encadrées en vert dans ce document) et les résultats qui ont été exportés vers le fichier Excel (encadrés en orange dans ce document).

3.1.1. Alimentation Hydrogène

tom.	Alimentation Hydrogene					
Desc	+					
Ident	ification Paramètres Scripts	Ra	pport Courants	Notes	Paramètre	es av 4
6) 🕥 🙉 🔎 🖉	D				
_		_				*
Þ	MODULE : TYPE : DESCRIPTION :	Ali Ali	mentation Hy mentation d	ydr u procéd	é	
	1 COURANT(S) SORTANT CO2	(5)	:			
	1 COURANT(S) D'INFOR Donnees - Charg	MAT	ION ENTRANT	(5) :		E
	CALCULATOR THERMODYNA	MIQ	UE : <u>SRK-MH</u>	IV2-UNIF	<u>AC</u>	
	CALCULATOR THERMODYNA *** COURANT MATIERE	MIQ IS:	UE : <u>SRK-MH</u> SU DU MODULE	IV2-UNIF	<u>AC</u> **	
	CALCULATOR THERMODYNA *** COURANT MATIERE TEMPERATURE	IS:	UE : <u>SRK-MH</u> SU DU MODULE 311.000	IV2-UNIF E ALIM * (K)	<u>AC</u> **	
	CALCULATOR THERMODYNA *** COURANT MATIERE TEMPERATURE PRESSION	MIQ IS: = =	UE : <u>SRK-MH</u> SU DU MODULE 311.000 37.7350	(K) (ATM)	<u>AC</u> **	
Г	CALCULATOR THERMODYNA *** COURANT MATIERE TEMPERATURE PRESSION CONSTITUANT	MIQ IS: = = *	UE : <u>SRK-MH</u> SU DU MODULE 311.000 37.7350 DEBIT MOLAI (KMOL/HR	IV2-UNIF E ALIM * (K) (ATM) IRE	<u>AC</u> **	
Γ	CALCULATOR THERMODYNA *** COURANT MATIERE TEMPERATURE PRESSION CONSTITUANT	MIQ IS: = = * *	UE : <u>SRK-MH</u> SU DU MODULE 311.000 37.7350 DEBIT MOLAI (KMOL/HR)	IV2-UNIF E ALIM * (K) (ATM) IRE	<u>AC</u> **	
ſ	CALCULATOR THERMODYNA *** COURANT MATIERE TEMPERATURE PRESSION CONSTITUANT HYDROGEN	MIQ IS: = = * * *	UE : <u>SRK-MH</u> SU DU MODULE 311.000 37.7350 DEBIT MOLAI (KMOL/HR) 1383.33 20.1300	IV2-UNIF E ALIM * (K) (ATM) IRE	<u>AC</u> **	
[CALCULATOR THERMODYNA *** COURANT MATIERE TEMPERATURE PRESSION CONSTITUANT HYDROGEN METHANE BENZENE	MIQ IS: = = * * * * *	UE : <u>SRK-MH</u> SU DU MODULE 311.000 37.7350 DEBIT MOLAI (KMOL/HR) 1383.33 39.1300 0.000000	IV2-UNIF ALIM * (K) (ATM) IRE	<u>AC</u> **	
	CALCULATOR THERMODYNA *** COURANT MATIERE TEMPERATURE PRESSION CONSTITUANT HYDROGEN METHANE BENZENE CYCLOHEXANE	MIQ IS: = = * * * * * * * *	UE : <u>SRK-MH</u> SU DU MODULE 311.000 37.7350 DEBIT MOLAI (KMOL/HR) 1383.33 39.1300 0.00000 0.00000	IV2-UNIF ALIM * (K) (ATM) IRE	<u>AC</u> **	
	CALCULATOR THERMODYNA *** COURANT MATIERE TEMPERATURE PRESSION CONSTITUANT HYDROGEN METHANE BENZENE CYCLOHEXANE DEBIT MOLAIRE TOTAL	MIQ IS: = = * * * * * * * * *	UE : <u>SRK-MH</u> SU DU MODULE 311.000 37.7350 DEBIT MOLA1 (KMOL/HR) 1383.33 39.1300 0.00000 1422.46	IV2-UNIF E ALIM * (K) (ATM) IRE) (KMO	<u>AC</u> *** L/HR)	

3.1.2. Echangeurs de chaleur E102 et E103

Consignateur de température (STCONS1)	Consignateur de température (STCONS2)
Nom: E102	Nom: E103
Desc :	Desc :
Identification Paramètres Scripts Rapport Courants Notes Paramètres avancés	Identification Paramètres Scripts Rapport Courants Notes Paramètres avancés
MODULE : E102 TYPE : Consignateur de température DESCRIPTION :	MODULE : E103 TYPE : Consignateur de température DESCRIPTION :
1 COURANT(S) ENTRANT(S) :	1 COURANT(S) ENTRANT(S) :
1 COURANT(S) SORTANT(S) : CO5	1 COURANT(S) SORTANT(S) : <u>CO9</u>
CALCULATOR THERMODYNAMIQUE : SRK-MHV2-UNIFAC	CALCULATOR THERMODYNAMIQUE : SRK-MHV2-UNIFAC
TEMPERATURE : 422.000 (K) PRESSION : 32.9800 (ATM)	TEMPERATURE : 322.000 (K) PRESSION : 31.2800 (ATM)
QUANTITE DE CHALEUR ECHANGEE : 553202. (KCAL/HR)	QUANTITE DE CHALEUR ECHANGEE : -3.427511E+06 (KCAL/HR)
< <u> </u>	•
OK Annuler	OK Annuler

3.1.3. Compresseur K101

iom:	K101				
esc:					
dentif	ication Paramètres Scripts Rapport Courants Not	tes	Paramètres av	ancés	
0	📀 🏔 🔎 🎤 🗊 🗟 📓				
	INFORMATIONS SUR LE COMPRESSE	UR			
	DONNEES DE CALCUL				
	NOMBRE D'ETAGE(S) DE COMPRESSION	= 1			
	RENDEMENT ISENTROPIOUE	= 0	.7500 (-)		
	RENDEMENT MECANIQUE	= 1	.0000 (-)		
	RENDEMENT ELECTRIQUE	= 1	.0000 (-)		
	PRESSION DE REFOULEMENT SPECIFIEE	-	34.0000	(ATM)	
	RESULTATS				
	PUISSANCE ISENTROPIQUE NECESSAIRE	=	344697.	(KCAL/HR)	
	RENDEMENT ISENTROPIQUE	= 0	.750000	(-)	
	PUISSANCE INTERNE NECESSAIRE	=	459596.	(KCAL/HR)	
	RENDEMENT MECANIQUE	=	1.00000	(-)	
	PUISSANCE MECANIQUE NECESSAIRE	=	459596.	(KCAL/HR)	
	RENDEMENT ELECTRIQUE	-	1.00000	(-)	
	FOISSANCE ELECTRIQUE NECESSAIRE	-	433390.	(KCAL/HR)	1
	HAUTEUR THEORIQUE DE REFOULEMENT	-	12721.1	(M)	
	PRESSION DE REFOULEMENT	=	34,0000	(ATM)	
			_		

3.1.4. Colonne C101

🧶 Colonne ä	à distiller (\$C	OLD)					
Nom: C101							
Desc :							
0000.							
Identification	Paramètres	Scripts Rappor	Courants	Profils No	tes Paramètre	es avancés	
00							
	e e /~						
PLATEAU	TEMPERATU	JRE (DT)	PRESSION	DE	BIT LIQUID	E DEBIT VAPEL	JR ^
	(K)		(ATM)		(KMOL/HR)	(KMOL/HR)	
CONDENS	FUR ·						-
1	275.65	158.32	15.600		10.4255	10.4255	
							E
2	433.97	16.69	15.626		19.7746	20.8510	
3	450.66	2.94	15.653		22.3828	30.2001	
4	453.60	0.62	15.679		22.9195	32.8083	
5	454.22	0.19	15.706		23.0291	33.3450	
6	454.42	0.11	15.732		23.0569	33.4547	
7	454.53	0.10	15.759		23.0693	33.4825	
8	454.63	25.52	15.785		529.510	33.4948	
9	480.15	3.26	15.811		673.911	163.535	
10	483.41	0.49	15.838		698.859	307.936	
11	483.90	0.16	15.864		702.603	332.885	
12	484.06	0.12	15.891		703.723	336.628	
13	484.17	0.11	15.917		704.514	337.748	
14	484.28	0.11	15.944		705.261	338.539	
BOUILLE	UR :						
15	484.39		15.970		365.975	339.286	
CHALEUR	ENLEVEE A	AU CONDENSEUR	=	139841.	(KCAL/H	R)	
DISTIL	AT VAPEUR		_	10,4255	(KMOL/H	R)	
0101111				10111200	(11102/11	,	
TAUX DE	REFLUX		=	1.00000			
PLATEAU	= 8 DE	BIT D'ALIMEN	TATION =	376.400	(KMOL/H	R)	
	T/	AUX VAPORISAT	ION MOL=	1.361794E	-02		
CHALEUR	FOURNIE #	AU BOUILLEUR	=	1.624906E-	-06 (KCAL/H	R)	
RESIDU	LIQUIDE		=	365.975	(KMOL/H	R)	
4				m			
				m			
							K Annuler

3.2. Fichier Excel

Les résultats exportés vers le fichier Excel peuvent être visualisés ci-dessous.

	Α	В	С	D		E	F	
1								
2								
3	Modules							
4								
5	⇒ E102 : Echangeur de chaleur							
6								
7			Chale	ur échangée		553201,696	kcal/h	
8								
9	⇒ E103 : Echangeur de chaleur							
10								
11			Chale	ur échangée		-3427510,52	kcal/h	
12								
13	⇔ C101 : Colonne							
14								
15			Chale	ur au conde	nseur	139840,851	kcal/h	
16			Chale	ur au reboui	lleur	1624906,45	kcal/h	
17								
18								
Onnees Resultats (+)								
PRÊ	Т	1						