Getting started with Simulis[®] Pinch Energy module

Use Case 1: Energy integration of an esterification process - First steps with Simulis Pinch Energy

Release Simulis Pinch 2.0.0

Software & Services In Process Simulation

We guide You to efficiency

This getting started shows you the basics of Simulis Pinch Energy in order to perform an energy integration of a process.

This example is linked with the ProSimPlus application example named "Energy analysis of an esterification process from vegetable oil."

This guide presents the following parts:

- Step 1: Data generation in MS-Excel
- Step 2: Definition of the energy target
- Step 3: Design of a heat exchanger network

The data, necessary to perfom the analysis, can be generated directly from a ProSimPlus simulation. In ProSimPlus, open the file **PSPS_E30_Esterification Process.pmp3**

Configure the module Energy pinch analysis

The configuration of the module is detailed in a ProSimPlus dedicated getting started document

The data needed to do the energy analysis are automatically generated at the end of the MS-Excel report.

The column *Stream* presents the names of the streams involving in a heat transfer in the simulation. These streams can be for example:

- A stream entering into a heat exchanger
- A stream entering into the condenser or into the reboiler of a column
- A stream entering into a separation tank and for which a heat exchange is carried out

PINC				
Channel	Dhusies Let. 1	Stor Work his his	T I= (C)	T Q: + (C)
Stream	Physical state	F*Cp (KCAL/HR/K)	T In (C)	TOUT (C)
C1	L	5598,5	25,0	135,0
C16	L	12863,6	45,0	54,0
C4	L	17535,5	96,0	200,0
C7	LV	53389,9	90,8	100,0
C17	L	13172,4	54,0	61,8
C13	L	6140,5	65,0	88,0
C23	L	15527,9	76,6	200,0
C28	LV	12990,1	38,6	70,0
C29	LV	6902,6	70,0	150,0
Rebo.C301	L	12420,4	83,9	136,2
C61	LV	865,0	116,9	140,0
C10	L	7064,3	100,0	80,0
C11	L	6859,1	80,0	65,0
C43	v	86842,1	100,0	82,1
C26	LV	225,0	76,7	76,7
C30	v	42039,9	76,7	25,0
C33	V	5143,6	150,0	25,0
C36	L	5811,4	150,0	79,8
C39	L	5149,4	79,8	57,3
Cond.C301	v	152710,2	48,4	38,5
C52	v	189,7	140,0	11,0
C62	L	4952,8	57,7	20,0
C51	L	623,5	70,0	20,0
C50	L	701,4	140,0	70,0
		1		

These automatically generated data are available in the last MS-Excel results file

According to the definition of the decimal separator of your computer, it will be or not necessary to replace points "." by comma "," so that these values are well interpreted in MS-Excel.

The column Physical state of the stream indicates :

- L for liquid
- V for vapor
- LV for liquid-vapor (condensation or evaporation)

PINC				
Stream	Physical state	F*Cp (KCAL/HR/K)	T In (C)	T Out (C)
C1	L	5598,5	25,0	135,0
C16	L	12863,6	45,0	54,0
C4	L	17535,5	96,0	200,0
C7	LV	53389,9	90,8	100,0
C17	L	13172,4	54,0	61,8
C13	L	6140,5	65,0	88,0
C23	L	15527,9	76,6	200,0
C28	LV	12990,1	38,6	70,0
C29	LV	6902,6	70,0	150,0
Rebo.C301	L	12420,4	83,9	136,2
C61	LV	865,0	116,9	140,0
C10	L	7064,3	100,0	80,0
C11	L	6859,1	80,0	65,0
C43	v	86842,1	100,0	82,1
C26	LV	225,0	76,7	76,7
C30	v	42039,9	76,7	25,0
C33	v	5143,6	150,0	25,0
C36	L	5811,4	150,0	79,8
C39	L	5149,4	79,8	57,3
Cond.C301	v	152710,2	48,4	38,5
C52	v	189,7	140,0	11,0
C62	L	4952,8	57,7	20,0
C51	L	623,5	70,0	20,0
C50	L.	701,4	140,0	70,0

The column **F*****Cp** shows the heat duty exchanged divided by ΔT (temperature difference between the inlet and the outlet of the heat exchange), expressed in kcal/hr/K.

The "**F*****Cp**" of a stream corresponds to the mass flowrate (F) multiplied by the specific heat capacity at constant pressure (Cp).

In other words, the heat duty exchanged to heat or cool the stream (denoted Q) is equal to:

$$Q = F * Cp * \Delta T = F * Cp * (T_{out} - T_{in})$$

The "**F*****Cp**" represents thus the enthalpy difference between the inlet and the outlet divided by Δ T for a single phase fluid (name used in the pinch analysis, although not appropriate to the phase change).

PINC					
Stream	Physical state	F*Cp (KCAL/HR/K)	T In (C)	T Out (C)	
C1	L	5598,5	25,0	135,0	
C16	L	12863,6	45,0	54,0	
C4	L	17535,5	96,0	200,0	
C7	LV	53389,9	90,8	100,0	
C17	L	13172,4	54,0	61,8	
C13	L	6140,5	65,0	88,0	
C23	L	15527,9	76,6	200,0	
C28	LV	12990,1	38,6	70,0	
C29	LV	6902,6	70,0	150,0	
Rebo.C301	L	12420,4	83,9	136,2	
C61	LV	865,0	116,9	140,0	
C10	L	7064,3	100,0	80,0	
C11	L	6859,1	80,0	65,0	
C43	v	86842,1	100,0	82,1	
C26	LV	225,0	76,7	76,7	
C30	v	42039,9	76,7	25,0	
C33	v	5143,6	150,0	25,0	
C36	L	5811,4	150,0	79,8	
C39	L	5149,4	79,8	57,3	
Cond.C301	v	152710,2	48,4	38,5	
C52	v	189,7	140,0	11,0	
C62	L	4952,8	57,7	20,0	
C51	L	623,5	70,0	20,0	
C50	L	701,4	140,0	70,0	

The inlet temperature (Tin) and the outlet temperature (Tout) are expressed in degrees Celsius.

If temperature increases (Tout > Tin), the stream will be considered as a cold stream (needs to be heated).

If the temperature decreases (Tout < Tin), the stream will be considered as a hot stream (needs to be cooled).

During condensation, evaporation or heat exchange at constant temperature (phase change of a pure substance, for example), the ΔT is automatically set to ± 0.01°C and the F*Cp is calculated consequently.

PINC				
Stream	Physical state	F*Cp (KCAL/HR/K)	T In (C)	T Out (C)
C1	L	5598,5	25,0	135,0
C16	L	12863,6	45,0	54,0
C4	L	17535,5	96,0	200,
C7	LV	53389,9	90,8	100,
C17	L	13172,4	54,0	61,
C13	L	6140,5	65,0	88,
C23	L	15527,9	76,6	200,
C28	LV	12990,1	38,6	70,
C29	LV	6902,6	70,0	150,
Rebo.C301	L	12420,4	83,9	136,
C61	LV	865,0	116,9	140,
C10	L	7064,3	100,0	80,
C11	L	6859,1	80,0	65,
C43	v	86842,1	100,0	82,
C26	LV	225,0	76,7	76,
C30	v	42039,9	76,7	25,
C33	V	5143,6	150,0	25,
C36	L	5811,4	150,0	79,
C39	L	5149,4	79,8	57,
Cond.C301	V	152710,2	48,4	38,
C52	V	189,7	140,0	11,
C62	L	4952,8	57,7	20,
C51	L	623,5	70,0	20,
C50	L	701,4	140,0	70,

Data can come from external sources. For example, the user can generate the Cp missing for one or more streams by using **Simulis Thermodynamics** (the thermodynamic properties calculation server provided by ProSim) directly in MS-Excel environment.

In all cases, the user must ensure to maintain the same format:

- 1st column: Stream name
- 2th column: Physical state
- 3th column: F*Cp
- 4th column: Tin
- 5th column: Tout

PINC				
Stream	Physical state	F*Cp (KCAL/HR/K)	T In (C)	T Out (C)
C1	L	5598,5	25,0	135,0
C16	L	12863,6	45,0	54,0
C4	L	17535,5	96,0	200,0
C7	LV	53389,9	90,8	100,0
C17	L	13172,4	54,0	61,8
C13	L	6140,5	65,0	88,0
C23	L	15527,9	76,6	200,0
C28	LV	12990,1	38,6	70,0
C29	LV	6902,6	70,0	150,0
Rebo.C301	L	12420,4	83,9	136,2
C61	LV	865,0	116,9	140,0
C10	L	7064,3	100,0	80,0
C11	L	6859,1	80,0	65,0
C43	V	86842,1	100,0	82,1
C26	LV	225,0	76,7	76,7
C30	V	42039,9	76,7	25,0
C33	V	5143,6	150,0	25,0
C36	L	5811,4	150,0	79,8
C39	L	5149,4	79,8	57,3
Cond.C301	V	152710,2	48,4	38,5
C52	V	189,7	140,0	11,0
C62	L	4952,8	57,7	20,0
C51	L	623,5	70,0	20,0
C50	L	701,4	140,0	70,0

After installing Simulis Pinch, the tool has to be registered in MS-Excel[®] using the dedicated ProSim tool with one of the two following methods:

- 1. In the "ProSim" application folder, click on "Register Simulis Pinch add-in"
- 2. Find directly the tool "Register Simulis Pinch add-in" on your computer (using the search bar)

Register Simulis Pinch by clicking on "Register":

- 1. Run Simulis Pinch Energy
- 2. Select the columns F*Cp, Tin and Tout (only numerical values, not the column headings, as shown in the screenshots below)

⊟ 5ਾਟਾ ∓							Book	I - Excel					
File Home	Insert Page Layout	Formulas	Data	Review	View	Add-ins	ACROBAT	Q Tell					
Simulis • Insert •	✓ Duplicate ✓ Move ✓ I nulis Pinch Energy	lename ∗ Delete	+ Edit +						PINC				
									Stream	Physical state	F*Cp (KCAL/HR/K)	T In (C)	T Out (C)
Menu Commands	Custom To	olbars							C1	L	5598,5	25,0	135,0
									C16	L	12863,6	45,0	54,0
									C4	L	17535,5	96,0	200,0
									C7	LV	53389,9	90,8	100,0
									C17	L	13172,4	54,0	61,8
									C13	L	6140,5	65,0	88,0
									623	L	15527,9	76,6	200,0
						_			C28	LV	12990,1	38,6	70,0
ergy integration calculat	tion						~		C29	LV	6902,6	70,0	150,0
									Rebo.C301	L	12420,4	83,9	136,2
Pinch data selectio	n Mcal/b	Valid selection				\sim			C61	LV	865,0	116,9	140,0
									C10	L	7064,3	100,0	80,0
Dinch value		Valid value			($\setminus \land \mid$			C11	L	6859,1	80,0	65,0
PINCH Value						$\mathbf{v} \setminus \mathbf{j}$			C43	V	86842,1	100,0	82,1
									C26	LV	225,0	76,7	76,7
Heat exchangers net	work analysis					\smile			C30	V	42039,9	76,7	25,0
									C33	V	5143,6	150,0	25,0
		1			- 1		1		C36	L	5811,4	150,0	79,8
Options Help	About			Calcul	ate	Cancel			C39	L	5149,4	79,8	57,3
							-		Cond.C301	V	152710,2	48,4	38,5
									C52	V	189,7	140,0	11,0
									C62	L	4952,8	57,7	20,0
									C51	L	623,5	70,0	20.0

70,0

701,4

C50

140,0

Simulis Pinch Energy can also be run from the context menu (right click) after you select the input data:

- 1. Select the 3 columns F*Cp, Tin and Tout (only numerical values, not the column headings, as shown in the screenshots below)
- 2. Right-click to access the context menu

PINC					
Stream	Physical state	F*Cp (KCAL/HR/K)	T In (C)	T Out (C)	
C1	L	5598,5	25,0	135,0	
C16	L	12863,6	45,0	54,0	
C4	L	17535,5	96,0	200,0	
C7	LV	53389,9	90,8	100,0	
C17	L	13172,4	54,0	61,8	
C13	L	6140,5	65,0	88,0	
C23	L	15527,9	76,6	200,0	
C28	LV	12990,1	38,6	70,0	
C29	LV	6902,6	70,0	150,0	
Rebo.C301	L	12420,4	83,9	136,2	
C61	LV	865,0	116,9	140,0	
C10	L	7064,3	100,0	80,0	
C11	L	6859,1	80,0	65,0	
C43	V	86842,1	100,0	82,1	
C26	LV	225,0	76,7	76,7	
C30	V	42039,9	76,7	25,0	
C33	V	5143,6	150,0	25,0	
C36	L	5811,4	150,0	79,8	
C39	L	5149,4	79,8	57,3	
Cond.C301	V	152710,2	48,4	38,5	
C52	V	189,7	140,0	11,0	
C62	L	4952,8	57,7	20,0	
C51	L	623,5	70,0	20,0	
C50	L	701,4	140,0	70,0	

1. Change the unit to match the specified unit in the MS-Excel workbook (kcal/h in this case) 23 Energy integration calculation Valid selection kcal/h Pinch data selection Pinch value °C 🔻 10 Heat exchangers network analysis Options ... Calculate About ... Cancel 2. Provide the value of the pinch (that is 3. Click on Calculate to say the temperature difference at the

pinch)

4 sheets are generated for the energy audit:

- 1. The grand composite curve
- 2. The hot and cold composite curves
- 3. The streams (hot streams and cold streams)
- 4. The results of the energy pinch analysis (data and summary of results)

If the user has a license for the use of Simulis Pinch, the tool can generate a heat exchanger network which the purpose is to recover a maximum internal energy in the process

Interface without Simulis Pinch licence

 Energy integration calculation
 Image: Section section

 Pinch data selection
 kcal/h

 Valid selection
 Image: Section secti

Interface with Simulis Pinch licence

1. Change the unit to match the unit specified in the MS-Excel workbook (kcal/h in this case)

4. Click on Next

1. Check the box *Heat exchanger network design*

Firstly, the default values will be kept (Automatic selection of the heat exchangers)

2. Uncheck the box *Minimum threshold of energy recovery (%)*. When this option is unchecked, the software attempts to reach the MER i.e. the Maximum Energy Recovery.

Exchange characterization -					
Misimum hash data (araba)					
Minimum heat duty (kcal/h)		0			
Minimum percentage of ener	rgy recovery / MER (%)	0			
Maximum coupling degree	>	3			
Allow stream division	2	Utility to prese	erve		
Allow be call an intern		Hot utility			
		C Cold utility	ý		
Heat exchangers network d	esign				
Selection method:	Automatic	C Semi-Automatic	C Manual		
Criteria for automatic exc	changers selection				
First criterion	Maximum (Heat du	ity*Efficiency)	•		
Second criterion	Minimum index		•		
This desides the					
i nira criterion	Minimum distance		•		
Procedure stop criteria					
Multiplication factor of	the number of initial stre	ams 👔 🚺			
Minimum threshold of e	energy recovery / initial N	100 100			
Maximum number of h	eat exchangers	10			
	-	,		Graphic	options
				Giapriicio	
Optional constraints	Help Def	ault parameters	< Return	Calculate	Can

© 2021 ProSim S.A. All rights reserved.

A message will indicate the end of the calculations (when a stop criterion is met)

For this example, the maximum number of heat exchangers defined by the user (10 heat exchangers by default) is reached

The heat exchanger network is then displayed:

Each circle represents a cold utility exchanger (blue circle by default), a hot utility (red circle by default) or an integration heat exchanger (white circle by default)

It is possible to change the position of the heat exchangers and change the colors of different information

Two additional sheets were generated:

- 1. Energy integration results
- 2. Input data

This button lets you display the heat exchanger network

🚯 Display exchangers network

SUMMARY FOR THE HEAT EXCHANGER NETWORK

Initial number of possible exchanges:	40
Multiplication factor for the initial number of streams:	1,0
Cumulative percentage of energy recovery:	98,83
Number of heat exchangers:	10
Total energy recovery (kcal/h):	2 111 581,8
Energy to recover (kcal/h):	9 837,3
Additional required amount of cold utility (kcal/h):	4 835 756,9
Additional required amount of hot utility (kcal/h):	4 725 562,0
Hot utility exchangers number:	10
Cold utility exchangers number:	13

RESULTS FOR THE AUTOMATIC DESIGN OF THE HEAT EXCHANGER NETWORK

Fuchanger	INPUT DATA									
Exchanger	Cold Stream					Hot S	tream		Cold	
item	Name	Input T (°C)	Target T (°C)	Target Q (kcal/h)	Name	Input T (°C)	Target T (°C)	Target Q (kcal/h)	Input T (°C)	
1	C1	25,0	135,0	615 829,7	C33	150,0	25,0	642 947,8	25,0	
2	C28	38,6	70,0	408 208,4	C43	100,0	82,1	1 556 510,7	38,6	
3	C29	70,0	150,0	552 205,7	C36	150,0	79,8	408 208,4	70,0	
4	C23	76,6	200,0	1 915 438,4	C43	100,0	86,8	1 148 302,4	76,6	
5	C13	65,0	88,0	141 286,3	C43	100,0	86,8	940 931,0	65,0	
6	C16	45,0	54,0	115 772,8	C10	100,0	80,0	141 286,3	45,0	
7	C17	54,0	61,8	102 886,1	C11	80,0	65,0	102 886,1	54,0	
8	Rebo.C301	83,9	136,2	650 000,0	C43	100,0	86,8	799 644,7	83,9	
9	C29	70,0	140,0	76 384,3	C50	140,0	70,0	49 098,9	70,0	
10	C1	25,0	135,0	24 317,7	C52	140,0	11,0	24 471,3	25,0	

EXCHANGERS STILL REMAINING AFTER THE HEAT EXCHANGER NETWORK SYNTHESIS

		Exchanger	Cold Stream						Hot S	tream		Cold
		item	Name I	nput T (°C)	Target T (°C	:) Target Q (kcal/h)	N	ame	Input T (°C)	Target T (°C)	Target Q (kcal/h)	Input T (°C)
		1	C29	70,0	130,0	23 387,5		C10	100,0	96,4	25 513,6	70,0
_		2	C29	70,0	130,0	23 387,5		C10	100,0	96,4	25 513,6	70,0
	nergy	Integration resu	Input data	Grand comp	osite curve	Composite curves (TQ)	Streams	Pinch results	PSPS_EXX_P	rocédé_Esterification	🕂 : 📢	

The first part of the "Energy integration Results sheet" summarizes the global information on energy integration and on the heat exchanger network

SUMMARY FOR THE HEAT EXCHANGER NETWORK

Initial number of possible exchanges:	40
Multiplication factor for the initial number of streams:	1,0
Cumulative percentage of energy recovery:	98,83
Number of heat exchangers:	10
Total energy recovery (kcal/h):	2 111 581,8
Energy to recover (kcal/h):	9 837,3
Additional required amount of cold utility (kcal/h):	4 835 756,9
Additional required amount of hot utility (kcal/h):	4 725 562,0
Hot utility exchangers number:	10
Cold utility exchangers number:	13

In the present case, with 10 integration heat exchangers, the heat exchanger network proposed by Simulis Pinch Energy recovers 98.83% of MER (Maximum of Energy Recovery)

The 10 heat exchangers are described in a table showing their characteristics:

RESULTS FOR THE AUTOMATIC DESIGN OF THE HEAT EXCHANGER NETWORK

Duckson	INPUT DATA											
Item		Co	old Stream		Hot Stream							
	Name	Input T (°C)	Target T (°C)	Target Q (kcal/h)	Name	Input T (°C)	Target T (°C)	Target Q (kcal/h)				
1	C1	25,0	135,0	615 829,7	C33	150,0	25,0	642 947,8				
2	C28	38,6	70,0	408 208,4	C43	100,0	82,1	1 556 510,7				
3	C29	70,0	150,0	552 205,7	C36	150,0	79,8	408 208,4				
4	C23	76,6	200,0	1 915 438,4	C43	100,0	86,8	1 148 302,4				
5	C13	65,0	88,0	141 286,3	C43	100,0	86,8	940 931,0				
6	C16	45,0	54,0	115 772,8	C10	100,0	80,0	141 286,3				
7	C17	54,0	61,8	102 886,1	C11	80,0	65,0	102 886,1				
8	Rebo.C301	83,9	136,2	650 000,0	C43	100,0	86,8	799 <mark>644,</mark> 7				
9	C29	70,0	140,0	76 384,3	C50	140,0	70,0	49 098,9				
10	C1	25,0	135,0	24 317,7	C52	140,0	11,0	24 471,3				

	INFORMATION ON ENERGY INTEGRATION											
Cold Stream		Hot S	tream	Heat duty exchanged (keel (b)	UA Factor LMTD		% of energy	Degree of	Index	Efficiency	Splitting	Heat duty*
Input T (°C)	Output T (°C)	Input T (°C)	Output T (°C)	Heat duty exchanged (kcal/h)	(kcal/h/°C)	(°C)	recovery /	coupling	muex	Enciency	ratio	efficiency
25,0	135,0	150,0	35,0	591 512,0	47 967,5	12,3	27,7	2	222	0,99	0,96	587 304,8
38,6	70,0	86,8	82,1	408 208,4	14 553,5	28,0	26,7	1	111	1,00	1,00	408 208,4
70,0	140,0	150,0	80,0	406 795,6	40 679,6	10,0	36,3	3	322	1,00	0,84	406 795,6
76,6	90,0	100,0	86,8	207 371,3	20 601,6	10,1	29,0	2	212	1,00	0,18	207 371,3
65,0	88,0	100,0	86,8	141 286,3	8 614,9	16,4	27,8	1	112	1,00	0,15	141 286,3
45,0	54,0	96,4	80,0	115 772,8	3 001,1	38,6	31,6	1	111	1,00	1,00	115 772,8
54,0	61,8	80,0	65,0	102 886,1	7 197,6	14,3	41,1	1	111	1,00	1,00	102 886,1
83,9	90,0	100,0	98,7	75 750,0	6 176,6	12,3	51,3	2	213	1,00	1,00	75 750,0
70,0	130,0	140,0	80,0	42 084,8	4 208,5	10,0	58,6	3	322	1,00	0,64	42 084,8
25,0	130,0	140,0	35,0	19 914,6	1 991,5	10,0	66,9	3	322	1,00	0,86	19 914,6

The first result shows that ≈100% of energy (MER) have been recovered using 10 heat exchangers.

Is this solution the most suitable? Is there a more interesting configuration?

From the energy recovery point of view, ≈100% of the heat have been recovered, it seems hard to go further!

From the design point of view, there may be site constraints:

- Two streams can not exchange because they are too viscous (heat exchangers design problem)
- Two streams can not exchange because they are too far from each other
- The user prefers a local integration
- The user does not want stream division
- The user wants to reduce the capital cost of heat exchangers
- ...

It will be cheaper to promote heat exchangers with a logarithmic mean temperature difference (LMTD) between the hot and cold streams as high as possible in order to minimize the exchange surface area and thus reduce capital costs of heat exchangers.

At this stage, it is possible to choose another specification for heat exchangers, or modify criteria to find the best suitable solution.

The Graphic options of Simulis Pinch Energy :

at exchangers network anal	rsis				8			
- Exchange characterization								Disp
Minimum heat duty (kcal/h)		0						Flux
Minimum percentage of ene	rgy recovery / MER (%)	0						
Maximum counting degree								
Hoxinan cooping degree	•	Utility to preserve						
Allow stream division	3	 Hot utility 	0					A date
		C Cold utility						Addi
		L						
Heat exchangers network of the second sec	esign							
-								I I Y I
Selection method:	Automatic	Semi-Automatic	C Magual					
Selection method: Criteria for automatic ex	Automatic C changers selection	Semi-Automatic	C Manual					
Selection method: Criteria for automatic ex First criterion	Automatic C changers selection Maximum (Heat duty	Semi-Automatic *Efficiency)	C Manual					
Selection method: Criteria for automatic ex First criterion Second criterion	Automatic C changers selection Maximum (Heat duty Minimum index	Semi-Automatic *Efficiency)	C Manual					
Selection method: Criteria for automatic ex First criterion Second criterion	Automatic C changers selection Maximum (Heat duty Minimum index	Semi-Automatic *Efficiency)	C Manual					
Selection method: Criteria for automatic ex First criterion Second criterion Third criterion	Automatic C changers selection Maximum (Heat duty Minimum index Minimum distance	Semi-Automatic *Efficiency)	C Manual					
Selection method: Criteria for automatic ex First criterion Second criterion Third criterion Procedure stop criteria	Automatic C changers selection Maximum (Heat duty Minimum index Minimum distance	Semi-Automatic *Efficiency)	C Manual					
Selection method: Criteria for automatic ex First criterion Second criterion Third criterion Procedure stop criteria Multiplication factor o	Automatic C changers selection Maximum (Heat duty Minimum index Minimum distance the number of initial stream	Semi-Automatic *Efficiency) 15 🕐 1	C Manual					
Selection method: Criteria for automatic ex First criterion Second criterion Third criterion Procedure stop criteria Multiplication factor o Minimum threshold of	Automatic C changers selection Maximum (Heat duty Minimum index Minimum distance the number of initial stream energy recovery / initial ME	Semi-Automatic **Efficiency)	C Manual					
Selection method: Criteria for automatic ex First criterion Second criterion Third criterion Procedure stop criteria Multiplication factor o Minimum threshold of	Automatic Automatic C dhangers selection Maximum (Heat duty Minimum index Minimum distance the number of initial stream energy recovery / initial ME eat exchangers	Semi-Automatic *Efficiency)	C Manual					
Selection method: Criteria for automatic ex First criterion Second criterion Third criterion Procedure stop criteria Multiplication factor o Minimum threshold of Minimum number of h	Automatic Automatic Automatic Maximum (Heat duty Minimum index Minimum distance the number of initial streamenergy recovery / initial ME eat exchangers	Semi-Automatic *Efficiency) Is 2 1 R (%) 100 10	C Manual	Gradvica				
Selection method: Criteria for automatic ex First criterion Second criterion Third criterion Procedure stop criteria Multiplication factor o Minimum threshold of Maximum number of h	Automatic C changers selection Maximum (Heat duty Minimum index Minimum distance the number of initial strear energy recovery / initial ME eat exchangers	Semi-Automatic *Efficiency) Is 1 R (%) 10 10	C Manual	Graphic o	ptions		-	

Display type	Standard 💌
Flux display option	Proportional -
Grid	options
Additional graphical results	
Draw bar diagrams of	heat exchangers
Draw connections bet	ween the streams
Show stream na	mes
Display the exch	anger item numbers
Add background	picture
No pie	cture selected
Dime	ensions selection

The Graphic options of Simulis Pinch Energy :

Colors used for network exchangers can be modified by clicking on the button **Grid options**

The Graphic options of Simulis Pinch Energy :

A diagram display for each heat exchanger is possible by checking the next box.

Simulis Pinch Energy generates at the calculation end a MS-Excel sheet for each heat exchanger with the diagram depending on temperature.

0

Simulis Pinch Energy proposes Manual or Semi-Automatic selection modes:

- 1. Select the data and find the next window
- 2. Check the Heat exchanger network design
- 3. Selection method: Manual

Heat exchangers network analysis	ß
Exchange characterization	
Minimum heat duty (kcal/h)	0
Minimum percentage of energy recovery / MER (%)	0
Maximum coupling degree 🕜	3
Allow stream division	Utility to preserve The utility Cold utility
Heat exchangers network design Selection method: C Automatic C	Semi-Automatic 💽 Manual
Criteria for automatic exchangers selection	
First criterion Maximum (Heat dut)	ty*Efficiency)
Second criterion Minimum index	•
Third criterion Minimum distance	v
Procedure stop criteria	
Multiplication factor of the number of initial stream	ams 😧 1
Minimum threshold of energy recovery / initial ME	ER (%) 100
Maximum number of heat exchangers	10
	Graphic options
Optional constraints Help Defau	ult parameters < Return Calculate Cancel

Exchanger	INPUT DATA								EXCHANGER CHARACTERISTICS						
Itom		Cold Stream	n		Hot Stream			Cold Stream		Hot Stream		Heat duty exchanged (Mcal/b)	UA Factor	LMTD	
item	Name	Input T (°C) Target T	(°C) Target Q (Mcal/h)	Name	Input T (°C)	Target T (°C)	Target Q (Mcal/h)	Input T (°C) Output T (°C)	Input T (°C)	Output T (°C)	near dury exchanged (Mcal/II)	(Mcal/h/°C)	(°C)	
1	C1	25,0 135,	615 829,7	C43	100,0	82,1	1 556 510,7	25,0	90,0	100,0	82,1	363 899,3	13 464,1	27,0	
2	C1	25,0 135,	615 829,7	C43	100,0	82,1	1 556 510,7	25,0	90,0	100,0	95,8	363 899,3	11 713,6	31,1	
3	C1	25,0 135,	615 829,7	C30	76,7	25,0	2 173 071,9	25,0	66,7	76,7	35,0	233 403,2	23 340,3	10,0	
4	C1	25,0 135,) 615 920,7	630	76,7	25,0	2 173 071,9	25,0	66,7	76,7	71,1	233 403,2	9 875,5	23,6	
5	C1	25,0 135,	615 829,7	C33	150,0	25,0	642 947,8	25,0	135,0	150,0	35,0	591 512,0	47 967,5	12,3	
6	C1	25,0 135,	615 829,7	C33	150,0	25,0	642 947.8	25,0	130,7	150,0	35,0	591 512,0	41 768,2	14,2	
7	C	25,0 135,	0 615 829,7	C36	150,0	79,8	408 208,4	62,1	135,0	150,0	79,8	408 208,4	25 044,6	16,3	
8	C1	25,0 135,	615 829,7	C36	150,0	Selection	f the exchanger			×),0	79,8	408 208,4	13 295,0	30,7	
9	C1	25,0 135,	615 829,7	C36	150,0	Selection o	r the exchanger	\		^),0	79,8	408 208,4	7 642,9	53,4	
10	C4	96,0 200,	1 824 282,7	C33	150,0	Select the it	em number of the desire	d exchanger		,0	106,0	226 492,2	22 649,2	10,0	
11	C4	96,0 200,	1 824 282,7	C33	150,0				Automatic colocti	,0	106,0	226 492,2	10 290,8	22,0	
12	C4	96,0 200,	1 824 282,7	C36	150,0	1.1			Automotic Sciecto	,0	106,0	255 897,4	25 589,7	10,0	
13	64	96,0 200,	1 824 282,7	C36	150,0	11-b	End of other Kee	u.P.		,0	106,0	255 897,4	11 927,2	21,5	
14	C7	90,8 100,	491 272,7	C33	150,0	нер	End of selection	Valic	late Cano	ei),0	100,8	253 072,5	10 182,6	24,9	
15	C7	30.8 100 ,	491 272,7	C33	150,0	25,0	642 947,8	90,8	95,5	150,0	100,8	253 072,5	9 647,3	26,2	
16	C7	90,8 100,	491 272,7	C36	150,0	79,8	408 208,4	90,8	100,0	150,0	100,8	285 928,5	11 504,6	24,9	
17	C7	90,8 100,) 101 272.7	C36	150,0	79,8	408 208 4	90,8	96,2	150,0	100,8	285 928,5	10 978,7	26,0	
18	C23	76,6 200,	1 915 438,4	C33	150,0	25,0	642 947,8	76,6	140,0	150,0	86,6	325 870,5	32 587,1	10,0	
19	C23	76,6 200,	1 915 438,4	C33	150,0	25,0	642 947,8	76,6	97,6	150,0	86,6	325 870,5	12 734,7	25,6	
20	C23	76,6 200,	1 915 438,4	C36	150,0	79,8	408 208,4	76,6	140,0	150,0	86,6	368 177,8	36 817,8	10,0	
21	C23	76,6 200,	1 915 438,4	C36	150,0	79,8	408 208,4	76,6	100,4	150,0	86,6	368 177,8	14 880,6	24,7	
22	C28	38,6 70,0	408 208,4	C43	100,0	82,1	1 556 510,7	38,6	70,0	86,8	82,1	408 208,4	14 553,5	28,0	
23	C28	38,6 70,0	408 208,4	C43	100,0	82,1	1 556 510,7	38,6	70,0	100,0	82,1	408 208,4	11 235,1	36,3	

- 1. Select the heat exchanger in the column *Exchanger item*
- 2. Click on Validate

In *Manual* selection mode, Simulis Pinch Energy offers the user a list of heat exchangers. The user selects the heat exchangers until one of the stop criteria is reached.

In *Semi-Automatic* selection mode, the user starts to select the heat exchangers like for *Manual* method. With this method, the user can at all time request Simulis Pinch to select automatically heat exchangers (*Automatic* method) by clicking on the *Automatic selection* button.

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

***:** +1 215 600 3759