Getting started with Simulis[®] Pinch Energy module

Use Case 2: Energy integration of an esterification process - Advanced use of Simulis Pinch Energy

Release Simulis Pinch 2.0.0

Software & Services In Process Simulation

We guide You to efficiency

This getting started shows you the use of optional constraints with Simulis Pinch Energy to perform an advanced process energy integration.

This example is linked with the ProSimPlus application example named "Energy analysis of an esterification process from vegetable oil."

This document follows the getting started "Case 1: Energy integration of an esterification process – First steps with Simulis Pinch Energy"

This guide is organized as follows:

- Step 1: Adding a constraint on zones
- Step 2: Adding a distance constraint between streams
- Step 3: Adding an incompatibility matrix
- Step 4: Adding a constraint of "difficulty" between streams
- Step 5: Adding economic assessment

Introduction

1

A first step before the use of optional constraints is to reshape the MS-Excel sheet input data:

Heat exchangers network analysis	83
Exchange characterization	
Minimum heat duty (kcal/h) 0	
Minimum percentage of energy recovery / MER (%)	
Maximum coupling degree 🚱 3	
✓ Allow stream division	
C Cold utility	
Image: Proceedure stop criteria Image: Procedure stop criteria <td< th=""><th>ic options</th></td<>	ic options
	Heat exchangers network analysis Exchange characterization Minimum heat duty (kcal/h) Iminum percentage of energy recovery / MER (%) Maximum coupling degree Iminum percentage of energy recovery / MER (%) Iminum coupling degree Iminum beat duty (kcal/h) Iminum percentage of energy recovery / MER (%) Iminum coupling degree Iminum heat duty to preserve Iminum heat duty and the duty of the duty for t

Introduction

2. Click on the Generate tables button

Heat Exchangers Network Design: Optional constraints	23
Use constraints on zone	Economic evaluation
O none	Surface unit m ²
Intrazone exchanges only Conditional interzone exchanges	Currency \$
,	Price per surface unit (\$/m ²)
Stream zones selection	Exchange coefficients selection
Selection of authorized cold zones	
Selection of authorized hot zones	Incompatibility matrix
	Selection
Maximum distance	Maximum difficulty
Selection	Selection
Help Generat	e Tables Validate Cancel

Introduction

The input data (stream names, physical state, F*Cp, Tin and Tout) are then reshaped and optional tables are generated in a "Optional Tables" sheet:

Stream names	Physical state	F*Cp (kcal/h/°C)	Input T (°C)	Target T (°C)	Difficulty
C1	L	5 598,5	25,0	135,0	
C16	L	12 863,6	45,0	54,0	
C4	L	17 535,5	96,0	200,0	
C7	LV	53 389,9	90,8	100,0	
C17	L	13 172,4	54,0	61,8	
C13	L	6 140,5	65,0	88,0	
C23	L	15 527,9	76,6	200,0	
C28	LV	12 990,1	38,6	70,0	
C29	LV	6 902,6	70,0	150,0	
Rebo.C301	L	12 420,4	83,9	136,2	
C61	LV	865,0	116,9	140,0	
C10	L	7 064,3	100,0	80,0	
C11	L	6 859,1	80,0	65,0	
C43	V	86 842,1	100,0	82,1	
C26	LV	225,0	76,7	76,7	
C30	V	42 039,9	76,7	25,0	
C33	V	5 143,6	150,0	25,0	
C36	L	5 811,4	150,0	79,8	
C39	L	5 149,4	79,8	57,3	
Cond.C301	V	152 710,2	48,4	38,5	
C52	V	189,7	140,0	11,0	
C62	L	4 952,8	57,7	20,0	
C51	L	623,5	70,0	20,0	
C50	L	701,4	140,0	70,0	

fficulty	Exchange coefficients (kcal/h/°C/m²)	Geom(x)	Geom(y)	Geom(z)

Background picture size bounds						
Xmin	Xmax	Ymin	Ymax			

The user defines the areas in which the different streams are present. In the case of this esterification process, three areas are described (esterification, demethanolisation and glycerin purification)

	Input data							
Stream names	Physical state	F*Cp (kcal/h/°C)	Input T (°C)	Target T (°C)		Stream Zone	Authorized cold stream zones	Authorized hot stream zones
C1	L	5 598,5	25,0	135,0		1		
C16	L	12 863,6	45,0	54,0		1		
C4	L	17 535,5	96,0	200,0		1		
C7	LV	53 389,9	90,8	100,0		1		
C17	L	13 172,4	54,0	61,8		1		
C13	L	6 140,5	65,0	88,0		1		
C23	L	15 527,9	76,6	200,0		1		
C28	LV	12 990,1	38,6	70,0		2		
C29	LV	6 902,6	70,0	150,0		2		
Rebo.C301	L	12 420,4	83,9	136,2		3		
C61	LV	865,0	116,9	140,0		3		
C10	L	7 064,3	100,0	80,0		1		
C11	L	6 859,1	80,0	65,0		1		
C43	V	86 842,1	100,0	82,1		1		
C26	LV	225,0	76,7	76,7		2		
C30	V	42 039,9	76,7	25,0		2		
C33	V	5 143,6	150,0	25,0		2		
C36	L	5 811,4	150,0	79,8		2		
C39	L	5 149,4	79,8	57,3		1		
Cond.C301	V	152 710,2	48,4	38,5		3		
C52	V	189,7	140,0	11,0		3		
C62	L	4 952,8	57,7	20,0		3		
C51	L	623,5	70,0	20,0		3		
C50	L	701,4	140,0	70,0		3		

In the optional constraints window:

- 1. Check Use constraints on zone box
- 2. Select the constraint to have only intrazone exchanges (the proposed exchangers are made only between the streams of the same zone)
- 3. Click on the button Stream zones selection button

Heat Exchangers Network Design: Optional constraints	8
	Economic evaluation
O none	Surface unit m ²
Intrazone exchanges only Conditional interzone exchanges	Currency €
	Price per surface unit 1000
Stream zones selection	Exchange coefficients selection
Selection of authorized cold zones	
Coloction of authorized bot zones	Incompatibility matrix
Selection of addionzed not zones	Selection
Maximum distance	Maximum difficulty 5
Selection	Selection
Help Generate	Tables Validate Cancel

Selection of the zones:

		Input data				_
Stream names	Physical state	F*Cp (kcal/h/°C)	Input T (°C)	Target T (°C)	Stream Zone	
C1	L	5 598,5	25,0	135,0	1	
C16	L	12 863,6	45,0	54,0	1	
C4	L	17 535,5	96,0	200,0	1	
C7	LV	53 389,9	90,8	100,0	1	
C17	L	13 172,4	54,0	61,8	1	
C13		C 140 F	<u> </u>	88,0	1	
C23	Selection of th	ne stream zones	? × 5	200,0	1	
C28	1 column: strea	am zones	5	70,0	2	
C29	\$Q\$4:\$Q\$27)	150,0	2	
Rebo.C301				136,2	3	
C61		OK	Annuler	140,0	3	
C10	L	7 064,3	100,0	80,0	1	
C11	L	6 859,1	80,0	65,0	1	✓ Use constraints on cone
C43	V	86 842,1	100,0	82,1	1	
C26	LV	225,0	76,7	76,7	2	O none
C30	V	42 039,9	76,7	25,0	2	Conditional interzone exchanges
C33	V	5 143,6	150,0	25,0	2	
C36	L	5 811,4	150,0	79,8	2	Valid selection
C39	L	5 149,4	79,8	57,3	1	Stream zones selection
Cond.C301	V	152 710,2	48,4	38,5	3	
C52	V	189,7	140,0	11,0	3	Selection of authorized cold zones
C62	L	4 952,8	57,7	20,0	3	
C51	L	623,5	70,0	20,0	3	Selection of authorized hot zones
C50	L	701,4	140,0	70,0	3	

The input data (modified from the default values) are as follows:

Heat exchangers network analysis	83
Exchange characterization	
Minimum heat duty (kcal/h) 5000	
Minimum percentage of energy recovery / MER (%) 0	
Maximum coupling degree 🚱 3	
Allow stream division	
C Cold utility	
Heat exchangers network design	
Selection method:	
Criteria for automatic exchangers selection	
First criterion Maximum (Heat duty*Efficiency)	
Second criterion Minimum index 🗸	
Third criterion Minimum distance	
Procedure stop criteria	
✓ Multiplication factor of the number of initial streams	
Minimum threshold of energy recovery / initial MER (%) 100	
Maximum number of heat exchangers	
Graphic options	
Optional constraints Help Default parameters < Return Calculate Cancel	

The results obtained by Simulis Pinch Energy are the following: 5 heat exchangers in the zone 1, 3 in the Zone 2, and 2 in the zone 3

SUMMARY FOR THE HEAT EXCHANGER NETWORK

Initial number of possible exchanges:	40
Multiplication factor for the initial number of streams:	0,9
Cumulative percentage of energy recovery:	83,25
Number of heat exchangers:	10
Total energy recovery (Mcal/h):	1 778 655,6
Energy to recover (Mcal/h):	56 689,8
Additional required amount of cold utility (Mcal/h):	5 168 683,2
Additional required amount of hot utility (Mcal/h):	5 058 488,3
Hot utility exchangers number:	8
Cold utility exchangers number:	13

RESULTS FOR THE AUTOMATIC DESIGN OF THE HEAT EXCHANGER NETWORK

Fuchanaan				I	IPUT DATA			
Exchanger		C	old Stream			Hot St	tream	
item	Name	Input T (°C)	Target T (°C)	Target Q (Mcal/h)	Name	Input T (°C)	Target T (°C)	Target Q (Mcal/h)
	C29	70,0	150,0	552 205,7	C36	150,0	79,8	408 208,4
2	C28	38,6	70,0	408 208,4	C33	150,0	25,0	642 947,8
	C1	25,0	135,0	615 829,7	C43	100,0	82,1	1 556 510,7
	C23	76,6	200,0	1 915 438,4	C43	95,8	82,1	1 192 611,4
5	C13	65,0	88,0	141 286,3	C10	100,0	80,0	141 286,3
6	C16	45,0	54,0	115 772,8	C43	94,2	82,1	1 050 307,4
	C17	54.0	61.9	102 886 1	C11	80.0	65.0	102 886 1
	C29	128,9	150,0	145 410,0	C33	150,0	127,9	113 477,2
	Rebo.C301	83,9	136,2	650 000,0	C50	140,0	70,0	49 098,9
10	Rebo.C301	86,5	136,2	617 665,7	C52	140,0	11,0	24 471,3
<u> </u>								

Using zones constraints, proposed 10 exchangers can recover 83.25% of the initial MER

 \rightarrow Network efficiency has been degraded when adding constraints

🕅 Display exchange

Step 2: Adding a distance constraint between streams

With Simulis Pinch Energy, it is possible to go beyond the concept of zones. The user can define coordinates of streams on the industrial site. For example, on a 2D plane:

Input data								
Stream names	Physical state	F*Cp (kcal/h/°C)	Input T (°C)	Target T (°C)				
C1	L	5 598,5	25,0	135,0				
C16	L	12 863,6	45,0	54,0				
C4	L	17 535,5	96,0	200,0				
C7	LV	53 389,9	90,8	100,0				
C17	L	13 172,4	54,0	61,8				
C13	L	6 140,5	65,0	88,0				
C23	L	15 527,9	76,6	200,0				
C28	LV	12 990,1	38,6	70,0				
C29	LV	6 902,6	70,0	150,0				
Rebo.C301	L	12 420,4	83,9	136,2				
C61	LV	865,0	116,9	140,0				
C10	L	7 064,3	100,0	80,0				
C11	L	6 859,1	80,0	65,0				
C43	V	86 842,1	100,0	82,1				
C26	LV	225,0	76,7	76,7				
C30	V	42 039,9	76,7	25,0				
C33	V	5 143,6	150,0	25,0				
C36	L	5 811,4	150,0	79,8				
C39	L	5 149,4	79,8	57,3				
Cond.C301	V	152 710,2	48,4	38,5				
C52	V	189,7	140,0	11,0				
C62	L	4 952,8	57,7	20,0				
C51	L	623,5	70,0	20,0				
C50	L	701,4	140,0	70,0				

ifficulty		Geom(x)	Geom(y)	Geom(z)
4	[200	80	
2		170	80	
4		130	100	
2		170	110	
2		90	120	
2		60	200	
2		60	190	
2		85	200	
2		75	140	
4		85	140	
2		60	200	
2		85	190	
2		200	115	
4		140	110	
2		40	55	
4		60	15	
4		40	70	
2		70	60	
2		80	100	
3		45	15	
4		20	60	
2		55	5	
2		85	50	
4		75	120	

Step 2: Adding a distance constraint between streams

In the optional constraints window, the user must:

1. Select the coordinates

	Input data							
(°C)	Target	Input T (°C)	F*Cp (kcal/h/°C)	Physical state	Stream names			
35,0		25,0	5 598,5	L	C1			
54,0		45,0	12 863,6	L	C16			
00,0		96,0	17 535,5	L	C4			
	2		· · · · · · ·	LV	C7			
×	ſ	n	Mapping selection	L	C17			
			3 columns : x, y, z	L	C13			
			SMS4:SOS27	L	C23			
				LV	C28			
	Annul	OK] L	LV	C29			
36,2		83,9	12 420,4	L	Rebo.C301			
40,0		116,9	865,0	LV	C61			
80,0		100,0	7 064,3	L	C10			
65,0		80,0	6 859,1	L	C11			
82,1		100,0	86 842,1	V	C43			
76,7		76,7	225,0	LV	C26			
25,0		76,7	42 039,9	V	C30			
25,0		150,0	5 143,6	V	C33			
79,8		150,0	5 811,4	L	C36			
57,3		79,8	5 149,4	L	C39			
38,5		48,4	152 710,2	V	Cond.C301			
11,0		140,0	189,7	V	C52			
20,0		57,7	4 952,8	L	C62			
20,0		70,0	623,5	L	C51			
70,0		140,0	701,4	L	C50			

ilty	Geom(x)	Geom(y)	Geom(z)
	200	80	
	170	80	
	130	100	
	170	110	
	90	120	
	60	200	
	60	190	
	85	200	
	75	140	
	85	140	
	60	200	
	85	190	
	200	115	
	140	110	
	40	55	
	60	15	
	40	70	
	70	60	
	80	100	
	45	15	
	20	60	
	55	5	
	85	50	
	75	120	

The units of coordinates information and the maximum distance are identical (it is why they do not appear)

2. Give the maximum distance between two streams In this example, the constraint is 100 m

Mapping		
Maximum distance	100	
Selection	Valid selection	

Step 2: Adding a distance constraint between streams

Simulis Pinch Energy proposes a new heat exchanger network. For each proposed heat exchanger, the distance between the streams is displayed

uistance between the streams is uisplaye

SUMMARY FOR THE HEAT EXCHANGER NETWORK

Initial number of possible exchanges:	47	Display exchangers network
Multiplication factor for the initial number of streams:	0,8	
Cumulative percentage of energy recovery:	68,72	
Number of heat exchangers:	7	
Total energy recovery (kcal/h):	1 468 288,0	
Energy to recover (kcal/h):	509 794,7	
Additional required amount of cold utility (kcal/h):	5 479 050,7	
Additional required amount of hot utility (kcal/h):	5 368 855,8	
Hot utility exchangers number:	9	
Cold utility exchangers number:	11	

RESULTS FOR THE AUTOMATIC DESIGN OF THE HEAT EXCHANGER NETWORK

Exchanger		INPUT DATA							
Exchanger		C	old Stream			Hot St	tream		Distance
item	Name	Input T (°C)	Target T (°C)	Target Q (kcal/h)	Name	Input T (°C)	Target T (°C)	Target Q (kcal/h)	Distance
1	C29	70,0	150,0	552 205,7	C36	150,0	79,8	408 208,4	80,2
2	C1	25,0	135,0	615 829,7	C43	100,0	82,1	1 556 510,7	67,1
3	Rebo.C301	83,9	136,2	650 000,0	C33	150,0	25,0	642 947,8	83,2
4	C13	65,0	88,0	141 286,3	C10	100,0	80,0	141 286,3	26,9
5	C16	45,0	54,0	115 772,8	C43	95,8	82,1	1 192 611,4	42,4
6	C17	54,0	61,8	102 886,1	C43	95,8	83,4	1 076 838,6	51,0
7	C28	38,6	70,0	408 208,4	C50	140,0	70,0	49 098,9	80,6

This distance constraint will not be used later in the example presented in this document

Step 3: Adding an incompatibility matrix

After adding distance constraints for local integration (steps 1 and 2 of the document), the user can add constraints of incompatibility. On site, the flash drums (C26 and C29 streams) are heated and cooled by a jacket. Only an *Utility* fluid can be used for heating or cooling the equipment.

It is then possible to add constraints of incompatibility (the streams C26 and C29 do not exchange with any other process streams)

Stream Zone	Authorized cold stream zones	Authorized hot stream zones
1		
1		
1		
1		
1		
1		
1		
2		
2		
3		
3		
4		

Incompatibility matrix	C10	C11	C43	C26	C30	C33	C36	C39	Cond.C301	C52	C62	C51	C50
C1	0	0	0	1	0	0	0	0	0	0	0	0	0
C16	0	0	0	1	0	0	0	0	0	0	0	0	0
C4	0	0	0	1	0	0	0	0	0	0	0	0	0
C7	0	0	0	1	0	0	0	0	0	0	0	0	0
C17	0	0	0	1	0	0	0	0	0	0	0	0	0
C13	0	0	0	1	0	0	0	0	0	0	0	0	0
C23	0	0	0	1	0	0	0	0	0	0	0	0	0
C28	0	0	0	1	0	0	0	0	0	0	0	0	0
C29	1	1	1	1	1	1	1	1	1	1	1	1	1
Rebo.C301	0	0	0	1	0	0	0	0	0	0	0	0	0
C61	0	0	0	1	0	0	0	0	0	0	0	0	0

Incompatibility matrix						
Selection	Valid selection					

Step 4: Adding a constraint of "difficulty" between streams

The concept of **difficulty** allows to represent different concepts (viscosity, toxicity, flammability ...). In our example, some streams are more viscous and more toxic than others.

A difficulty value is given to each stream. The user then sets the maximum difficulty:

Difficulty	Geom(x)	Geom(y)	Geom(z)	Stream Zone	Authorized cold stream zones	Authorized hot stream zones	
4	200	80		1			
2	170	80		1			
4	130	100		1			
2	170	110		1			
2	90	120	D	ifficulty selection	n ?	×	
2	60	200	1	column: difficult			
2	60	190		HS4/SHS27			I he difficulty of an exchange is the sum of the difficulties of the two streams
2	85	200					the difficulties of the two streams
2	75	140			OK A	nnuler	
4	85	140		3			
2	60	200		3			
2	85	190		1			
2	200	115		1			
4	140	110		1			
2	40	55		2			
4	60	15		2			
4	40	70		2			
2	70	60		2			
2	80	100		1			Differentier
3	45	15		3			
4	20	60		3			Maximum difficulty 5
2	55	5		3			
2	85	50		3			Selection Valid selection
4	75	120		3			

Step 5: Adding economic assessment

The user can do the economic evaluation of the addition of heat exchangers using the *economic evaluation* option of Simulis Pinch Energy.

To calculate the cost of the heat exchanger, it is necessary to provide the stream heat transfer coefficients. The user must provide these values and select them:

Stream names	Physical state	F*Cp (kcal/h/°C)	Input T (°C)	Target T (°C)	Difficulty	Exchange coefficients (kcal/h/°C/m²)
C1	L	5 598,5	25,0	135,0	4	600
C16	L	12 863,6	45,0	54,0	2	800
C4	L	17 535,5	96,0	200,0	4	700
C7	LV	53 389,9	90,8	100,0	2	12000
C17	L	13 172,4	54,0	61,8	2	800
C13	L	6 140,5	65,0	88,0	2	350
C23	L	15 527,9	76,6	200,0	2	500
C28	LV	12 990,1	38,6	70,0	2	20000
C29	LV	6 902,6	70,0	150,0	2	20000
Rebo.C301	L	12 420,4	83,9	136,2	4	260
C61	LV	865,0	116,9	140,0	2	10000
C10	L	7 064,3	100,0	80,0	2	350
C11	L	6 859,1	80,0	65,0	2	350
C43	V	86 842,1	100,0	82,1	4	150
C26	LV	225,0	76,7	76,7	2	15000
C30	V	42 039,9	76,7	25,0	4	170
C33	V	5 143,6	150,0	25,0	4	80
C36	L	5 811,4	150,0	79,8	2	170
C39	L	5 149,4	79,8	57,3	2	180
Cond.C301	v	152 710,2	48,4	38,5	3	200
C52	V	189,7	140,0	11,0	4	140
C62	L	4 952,8	57,7	20,0	2	110
C51	L	623,5	70,0	20,0	2	120
C50	L	701,4	140,0	70,0	4	130

Step 5: Adding economic assessment

The user must also provide:

- 1. The surface unit
- 2. The currency
- 3. The price per area unit (in this example $1000 \notin m^2$)

 Economic evaluation 		
Surface unit	m²]
Currency	€	
Price per surface unit (€/m²)	1000]
Exchange coefficien	ts selection	Valid selection

Step 5: Adding economic assessment

The price of each heat exchanger is calculated and displayed in the results sheet

SUMMARY FOR THE HEAT EXCHANGER NETWORK Initial number of possible exchanges: 18 Multiplication factor for the initial number of streams: Cumulative percentage of energy recovery: 35,95 Number of heat exchangers: 4 Total energy recovery (kcal/h): 768 153,6 Energy to recover (kcal/h): 1077894.2 Additional required amount of cold utility (kcal/h): 6 179 185,2 Additional required amount of hot utility (kcal/h): 6 068 990,3 Hot utility exchangers number: 10 Cold utility exchangers number: 10

RESULTS FOR THE AUTOMATIC DESIGN OF THE HEAT EXCHANGER NETWORK

Global exchange area (m²):

Global investment (€):

Exchanger Item	INPUT DATA								
	Cold Stream				Hot Stream				
	Name	Input T (°C)	Target T (°C)	Target Q (kcal/h)	Name	Input T (°C)	Target T (°C)	Target Q (kcal/h)	(€)
1	C28	38,6	70,0	408 208,4	C36	150,0	79,8	408 208,4	41 425,0
2	C13	65,0	88,0	141 286,3	C10	100,0	80,0	141 286,3	60 073,4
3	C16	45,0	54,0	115 772,8	C39	79,8	57,3	115 772,8	43 314,1
4	C17	54,0	61,8	102 886,1	C11	80,0	65,0	102 886,1	8 996,9

153.8

153 809.5

Display exchangers network

The constraints used are:

- Interzone exchange only (step 1)
- Use of utilities for flash drums heat exchanges (step 3)
- Incompatibility between some streams (step 4)

In addition, an economic evaluation is performed to estimate the capital cost of heat exchangers (step 5).

Heat Exchangers Network Design: Optional constraints	X				
Use constraints on zone 🕐	Economic evaluation				
 none Intrazone exchanges only 	Surface unit m ²				
Conditional interzone exchanges Valid selection	Price per surface unit 1000 (€/m²)				
Selection of authorized cold zones	Exchange coefficients selection				
Selection of authorized hot zones	Selection Valid selection				
Mapping 😮	☑ Difficulty 😮				
Maximum distance	Maximum difficulty 5				
Selection	Selection Valid selection				
Help Generate	Tables Validate Cancel				

Adding different constraints modifies the heat exchanger network. The proposed network has 4 heat exchangers. This network of 4 heat exchangers can recover ≈35% of MER.

SUMMARY FOR THE HEAT EXCHANGER NETWORK

Initial number of possible exchanges:	18
Multiplication factor for the initial number of streams:	0,8
Cumulative percentage of energy recovery:	35,95
Number of heat exchangers:	4
Total energy recovery (kcal/h):	768 153,6
Energy to recover (kcal/h):	1 077 894,2
Additional required amount of cold utility (kcal/h):	6 179 185,2
Additional required amount of hot utility (kcal/h):	6 068 990,3
Hot utility exchangers number:	10
Cold utility exchangers number:	10
Global exchange area (m ²):	153,8
Global investment (€):	153 809,5

RESULTS FOR THE AUTOMATIC DESIGN OF THE HEAT EXCHANGER NETWORK

INPUT DATA Exchanger INVESTMENT **Cold Stream** Hot Stream (€) Item Name Input T (°C) Target T (°C) Target Q (kcal/h) Name Input T (°C) Target T (°C) Target Q (kcal/h) 1 C28 38,6 70,0 408 208,4 C36 150,0 79,8 408 208,4 41 425,0 2 C13 60 073,4 65,0 88,0 141 286,3 C10 100,0 80,0 141 286,3 3 C16 45,0 54,0 115 772,8 C39 79,8 57,3 115 772,8 43 314,1 4 C17 54,0 61,8 102 886,1 C11 80,0 65,0 102 886,1 8 996,9

The proposed network is presented by Simulis Pinch Energy

The proposed network is shown in ProSimPlus example: **PSPS_E30_EN - Esterification Process.pmp3**

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

***:** +1 215 600 3759