Getting started with Simulis[®] Thermodynamics

Use Case 4: Calculating thermodynamic properties on a pure component or on a mixture

Software & Services In Process Simulation

We guide You to efficiency

© 2021 ProSim S.A. All rights reserved.

Introduction

Calculation of Thermodynamic properties and fluid phase equilibria can be performed from Simulis Thermodynamics. The user can also edit tables and graphs and export them to other applications.

This document presents in details the different steps to follow in order to perform these types of calculation.

The following steps are described in this document

- Step 1: Select the components
- Step 2: Calculate properties of a pure component
- Step 3: Calculate properties of a mixture
- Step 4: Calculate fluid phase equilibria

The example is based on a mixture of Benzene, Toluene and o-Xylene.

Before studying this chapter, it is recommended to consult "Getting Started with Simulis Thermodynamics: Use Case 1" that explains the method to select components and configure a thermodynamic profile.

Step 1: Select the components

ACCESS THE THERMODYNAMIC CALCULATOR EDITOR:

If you are using Simulis Thermodynamics in Excel:								
Create the coloulator chiest in a approachest	Insert - Duplicate - Move - Rename - Delete - Edit -							
Sreate the calculator object in a spreadsheet		Simulis System						
		Simulis Compound						
	4	Simulis Compounds	rsonna	alisées				
	\$	Simulis Calculator						
		Simulis Calculators	Е	F	G			
			-					

If you are using Simulis Thermodynamics within another ProSim environment (ProSimPlus, BatchReactor, BatchColumn etc...):

Click on the thermodynamic icon to open the calculator editor:

Simulis Thermodynamics is a « software component » that you can integrate into different applications: ProSim software, Excel, Matlab, your own software, etc...

Step 1: Select the components

Select the following components:

- Benzene (CAS 71-43-2)
- Toluene (CAS 108-88-3)
- o-Xylene (CAS 95-47-6)

(Refer to "Getting Started with Simulis Thermodynamic: Use case 1" for details on these operations)

Step 2: Calculate properties of a pure component

Step 2: Calculate properties of a pure component

Expand the folder "Temperature Dependent Properties". When you select a temperature dependent property, a graph appears on the right side of the window.

Click on "OK" or "Cancel" to go back to the thermodynamic calculator editor.

In order to calculate thermodynamic properties of a mixture, it is necessary to configure the thermodynamic profile.

🔕 Thermodynamic calculator editor × 1- For the mixture CALCULATOR This window helps you to define the context of your thermodynamic calculator used in this example, COMPOUNDS MODEL PARAMETERS 🕥 Open. select the SRK-THERMODYNAMIC MODEL Save as. SRK-MHV2-UNIFAC Name **MHV2-UNIFAC** CONFIGURATION PACKAGE Category All the profiles how the package manager.. SRK-MHV2-UNIFAC Profile thermodynamic mport a package Thermodynamic assistant Soreide-Whitson • Lee-Kesler-Plocker (LKP) Build a package.. ? Thermodynamic help roach type Lee-Kesler profile in the pull-Benedict-Webb-Rubin modified Starling (BWRS) Equation of state GC-PPC-SAFT MHV2 down menu. SERVICES Alpha function RK-M PSRK Calculate NRTL-PR Water-hydrocarbons model Mixing rules VTPR Export as a PSF file Chao-Seader Activity coefficient model Sol A 6.25043 Grayson-Streed X Diagrams Wilson Pure liquid fugacity standard state Sol B 4015.3 Dechema-compatible Wilson X Residue.. NRTL Liquid molar volume **T** NRTL ProSim Export as a PVT file The liquid phase splitting is taken into account Transport properties **Classic methods** -20 Stream. Enthalpy calculation H*=0, ideal gas, 25°C, 1 atm • Ø Predictive model parameters.. 2- Click on • œ User-defined thermodynamic model None Model index MODIFICATIONS "Calculate" to open Comments : CONFIGURATION the Calculation Name Comments service window. Calculator type Native -Cancel Ok Show the expert mode

8

© 2021 ProSim S.A. All rights reserved.

1- You can chose the type of calculation to run (calculation of mixture properties or fluid phase equilibria). Select "*ThermoPhysical properties*".

Calculation service					
Calculation service	This window heles you to define the context of your calcu	lations			
Add a new session	Type of calculation ThermoPhysical properties Critical properties Critical properties Critical properties	Session name	New session		2- Select the properties to
Session list New session	Kvalues and surface tension Allow the calcula Phase envelope Phase envelope deviation Properties ThermoPhysical properties	Physical state System	Automatically determined		calculate (in this example, "Dynamic viscosity")
	Transport Exergy Molecular weight	Property	Unit Initial Final Step	Points	Dynamie viscosity j.
Calculate the current session	Isobaric specific heat	Pressure Temperature	atm 1 1 0 K 298.15 298.15 0	1	
	Gamma (Cp/Cv ratio)	-Values			
Tor the calculation conditions	Dynamic viscosity V Kinematic viscosity	• Fractions	 Molar 		
For the calculated properties	Density Molar density	O Quantities	O Mass Total 0 kmol		
MODIFICATIONS	Molar volume Compressibility factor	Au Compound	Initial Final Step	Points	
OPTIONS A	Sound speed	BENZENE	0 0 0	1	
Hide the constant results	Osmotic coefficient	O-XYLENE	Auto Auto Auto	Auto	
	Isobaric expansion coefficient				
Help	Isothern compressibility coefficient				
	Thermodynamic				
	Entropy	Results type	1		
	Enthalpy Internal energy	Molar Mass			
	Show the error messages	Same compositi	」 ions whatever the calculation type		
	To calculate:				
				Quit	

1- Specify the operating

conditions:

- Pressure: 1 atm.
- Temperature: from 20°C to 80°C with a step of 1°C.
- Mixture composition: 50% mol of benzene, 10% mol of toluene, "auto" (in order to get a global composition of 100%) for o-Xylene.

2- You can change the unit system that is used for the presentation of the results.

3- Select the option *"Automatically plot the results"*.

Calculation service							-		
Calculation service	This window helps you to define the contex	t of your calcula	ations						
essions — A									
Add a new session	Type of calculation ThermoPhysical prope	rties 💌	Session name	New	session		_		
Object the current session	🗰 Data 🕮 I	Results							
Session list	Allow the calculation of derivatives		Physical state	Auto	matically de	termined	-		
New session	Descention								
	Properties		System	Vapo	r - Liquid		-		
	Molecular weight								_
B coloridate the summation in	Isobaric specific heat		Property	Unit	Initial	Final	Step	Points	5
Calculate the current session	Isochoric specific heat		Pressure	atm	1	1	0	1	
Calculate all the sessions	Gamma (Cp/Cv ratio)		remperature	L.	20	00	1	01	
	Thermal conductivity		Values						
	Dynamic viscosity	✓	values	lype					
For the calculation conditions	Kinematic viscosity		Fractions	• Mo	olar				
For the calculated properties	Density		Quantities	⊖ Ma	iss	Total O km	nol		
	Molar density		Mixture composit	ions			1	. .	Ĩ
MODIFICATIONS	Molar volume			4	L-D-L-L	Final	Char	Deinte	
	Compressibility factor		Au Compoun	d	Initial	Final	Step	Points	
	nH		BENZENE		0.5	0.5	0	1	
Hide the constant results	Osmotic coefficient	E I			0.1	0.1	0	1	
Automatically plot the results	Joule-Thomson coefficient		0-XYLEINE		Auto	Auto	Auto	Auto	
Automatically plot the results	Isobaric expansion coefficient								
1ELP 🔺	Isochoric tension coefficient								
(?) Help	Isotherm compressibility coefficient								
	Residual isobaric heat capacity								
	Residual isochoric heat capacity								
	Thermodynamic		-Pacults type						
	Entropy		C Malas						
	Internal energy	H_							
	Enthalow of vanorization		O Mass						

Click on "Calculate the current session".

Click on « *Add a new session* » if you want to run multiple sessions in parallel.

Carcanation Service	This window helps you to define the context	of your calcul	lations					
🕂 Add a new session	Type of calculation ThermoPhysical propert	ies 🔻	Session name	New	session			
👿 Delete the current session	🗊 Data 🖉 Re	esults						
Session list	Allow the calculation of derivatives		Physical state	Auto	matically det	ermined	•	
New session	Properties		System	Vana	r Liaula		-	
	Transport		System	vapo	r - Liquia		•	
	Molecular weight		Property	Unit	Initial	Final	Step	Points
Calculate the current session	Isobaric specific heat		Pressure	atm	1	1	0	1
₩ 8 - · · · ·	Isochoric specific heat		Temperature	°C	20	80	1	61
Calculate all the sessions	Gamma (Cp/Cv ratio)							Lunnan
	Thermal conductivity		Values	Type				
	Dynamic viscosity	≤ 1	() Frankland	opc.				
U For the calculation conditions	Kinematic viscosity		• Fractions	• MC	lar			
For the calculated properties	Density		Quantities	⊖ Ma	SS	Total 0 km	ol	
	Molar density		Mixture composit	tions				.
MODIFICATIONS	Molar volume						-	
	Compressibility factor		Au Compour	nd	Initial	Final	Step	Points
	Sound speed		BENZENE		0.5	0.5	0	1
Hide the constant results	pH		TOLUENE		0.1	0.1	0	1
	Osmotic coefficient		✓ o-XYLENE		Auto	Auto	Auto	Auto
Automatically plot the results	Joule-Thomson coefficient							
LIFE A	isobaric expansion coefficient							
	isochoric tension coefficient							
	Sotherm compressibility coefficient							
(?) Help	Residual isobaric heat capacity							
(?) Help								
🕐 Help	Therma dynamic			_				
(?) Help	Thermodynamic		-Decults type					
(?) Help	Thermodynamic Entropy		Results type					
(?) Help	Thermodynamic Entropy Enthalpy		Results type • Molar					
(?) Help	Thermodynamic Entropy Enthalpy Internal energy		Results type Molar Mass					

Quit

If the option "Automatically plot the results" has been checked, this window appears. Several graphs are available, select "Dynamic Viscosity" from the drop-down list.

If you want to plot the graph manually (after selecting "*Plot the points*"), follow the instructions from the Chart wizard:

In order to calculate fluid phase equilibria, go back to the *Calculation service* window.

1- Select "Equilibria" from the drop-down list.

Calculation service	This window helps you	to define the context of your calc	ulations						
essions — A	Project C:\dde								•
Add a new session									_
Delete the current sersion	Type of calculation Eq	uilibria 🔻	Session name	New s	ession				
	Cr	itical properties							
Calculate the current session	Data Ed	alues and surface tension							
Calculate all the sessions	Vapor - Liquid Ph	ase envelope	Property	Unit	Initial	Final	Step	Points	
ssion list	Bubble and dev	ermoPhysical properties	Pressure	atm	1	1	0	1	
aw cassion	Bubble and dev Re	id Vapor Pressure							
	Flash at given vapo	prization ratio and pressure							
	Flash at given vapo	prization ratio and temperature	Values				Туре	_	
	Flash at given tem	perature and pressure	• Fractions				Molar		
	Flash at given temp	perature and volume	O Quantities	Total 0 kmc	I		O Mass		
•	Flash at given pres	sure and volume					0		-
For the calculation conditions	Flash at given entr	alpy and pressure	Mixture composit	ions				- 0	Ē
For the calculated properties	Flash at given enth	alpy and volume	Auto Compound		Initial	Final	Step	Points	
	Flash at given enth	alpy and energy	BENZENE			0	0	1	
DIFICATIONS — A	Flash at given enth	alpy and entropy	TOLUENE		0	0	0	1	
Vindo	Flash at given entr	opy and temperature	✓ o-XYLENE		Auto	Auto	Auto	Auto	
Bedo	Flash at given entr	opy and pressure							
Redo	Flash at given entr	opy and volume							
10NS 🔺	Flash at given entr	opy and energy							
	Flash at given ener	rgy and temperature							1
Hide the constant results	Flash at given ener	gy and pressure							
Automatically plot the results	Flash at given ener	gy and volume							
	Henry constant								
P 🔺	Elash at given tem	perature and pressure							
) Help	Vapor - Liquid - Liquid	d							_
	Bubble temperatur	res	Results type		Automatic	initializatio	on		
	Flash at given tem	perature and pressure	Molar	Con	nound [-	
	Flash at given enth	alpy and pressure	O Mass	con	Liboana [
	Show the error messa	ges							
	To colculator								

2- Here are displayed the different types of flash that can be calculated. Select *"Flash at given temperature and pressure"*.

1- Specify the operating conditions:

- Pressure: 1 atm.
- Temperature: from 115°C to 130°C with a step of 1°C.
- Mixture composition: 50% mol of benzene, 10% mol of toluene, "auto" for o-Xylene.

2- Click on "Calculate" the current session".

Calculation service	_			_			_ 0	x
Calculation service SESSIONS Add a new session Delete the current session Calculate the current session	This window helps you to define the context of your calcul Project C:\dde Type of calculation Equilibria	lations Session name	Ne	w session				▼ ℃
Calculate all the sessions	Vapor - Liquid	Property	Unit	Initial	Final	Step	Points	
Session list	Bubble and dew temperatures	Temperature	°C	115	130	1	16	
New session	Bubble and dew pressures	Pressure	atm	1	1	0	1	
UNIT SYSTEM (RESULTS) For the calculation conditions For the calculated properties MODIFICATIONS Undo Redo OPTIONS Hide the constant results Automatically plot the results HELP Philp	Flash at given temperature and volume Flash at given pressure and volume Flash at given enthalpy and temperature Flash at given enthalpy and pressure Flash at given enthalpy and olume Flash at given enthalpy and entropy Flash at given enthalpy and temperature Flash at given entropy and volume Flash at given entropy and volume Flash at given entropy and volume Flash at given energy and temperature Flash at given energy and pressure Flash at given energy and volume Henny constant Liquid Flash at given temperature and pressure Flash at given temperature Flash at given tempera	Fractions Quantities Mixture compositions Auto Compound BENZENE TOLUENE TOLUENE <i>o-XYLENE</i> Results type Molar Mass	Total 0 itions	Initial 0,1 0,5 <i>Auto</i>	Final 0,1 0,5 Auto	M M M M Step 0 0 Auto	Points Points 1 1 Auto	

To calculate:

Quit

If the option "*Automatically plot the results*" has been checked, you can select from the dropdown list the graph you want to display.

Results are tabulated in the

You can copy the results and manually plot the points.

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

*****: +1 215 600 3759