Getting started with Simulis® Thermodynamics

Use Case 7: Plotting residue curves

Software & Services In Process Simulation

We guide You to efficiency

© 2021 ProSim S.A. All rights reserved.

Introduction

This document presents the different steps to follow in order to plot residue curves with Simulis Thermodynamics.

The steps are the following:

- Step 1: Set the thermodynamic system
- Step 2: Plot the ternary diagram
- Step 3: Plot the residue curves

The ternary system used in this example is a mixture of acetone, methanol and methyl-ethyl-ketone (MEK).

Before studying this case, it is recommended to consult "Getting Started with Simulis Thermodynamics, Case 1".

Residue curves map (RCM) are useful, for example, to visualize and investigate entrainers that can facilitate distillation by breaking an azeotrope.

Because the choice of an entrainer determines the separation sequence, its selection is a critical step in the synthesis and conceptual design of azeotropic distillation processes.

Residue curves are obtained by plotting the evolution through time of the composition of the liquid residue at vapor equilibrium for a simple batch distillation (Rayleigh distillation), starting with the initial composition of the boiler. The path of the liquid compositions starting from the initial point (charge composition) is called a *residue curve*.

ACCESS THE THERMODYNAMIC CALCULATOR EDITOR:

If you are using Simulis Thermodynamics in Excel:						
Create the coloulator chiest in a approachest	Inse	Insert Duplicate Move Rename Delete Edit				
Create the calculator object in a spreadsheet	4	Simulis System				
	4	Simulis Compound				
	2	Simulis Compounds	rsonna			
	*	Simulis Calculator				
	8	Simulis Calculators	Е	F	G	
			_			

If you are using Simulis Thermodynamics within another ProSim environment (ProSimPlus, BatchReactor, BatchColumn etc...):

Click on the thermodynamic icon to open the calculator editor:

Simulis Thermodynamics is a « software component » that you can integrate into different applications: ProSim software, Excel, Matlab, your own software, etc...

Select Acetone, Methanol and Methyl-Ethyl-Ketone in the standard pure components database (click on "Select compounds").

Refer to "Getting Started with Simulis Thermodynamics, use case 1" for details on these operations.

Select the NRTL profile in the "Model" tab

Thermodynamic calculator editor		– 🗆 X							
	This window helps you to define the context of your thermodynamic calculator COMPOUNDS MODEL BINARIES PARAMETERS								
 Open Save as PACKAGE — V 	These parameters correspond to the general values and are used if the user has not provided specific parameters (buttons to the right of each option in the thermodynamic profile) Binaries view: • Grid O Matrix								
SERVICES A	Compound Compound Cij0 Cij0 aij0 Cij7 ACETONE METHANOL 184,701 222,645 0,3084 0 ACETONE METHYL ETHYL KET 0 0 0 0 METHANOL 184,701 222,645 0,3084 0 ACETONE METHYL ETHYL KET 0 0 0 METHANOL METHYL ETHYL KET 307,427 217,91 0,3003 0	BINARIES							
 Residue Export as a PVT file Stream Sigma profiles 		Estimate binaries Save the binaries OPTIONS Unit							
MODIFICATIONS		cal/mole							
Comments Calculator type Native T Show the expert mode	✓ ✓ Not supplied Supplied Imported Estimated Comments :]							
		Ok Cancel							

Click on the "Binaries" tab (which appears when you select the NRTL model). The binaries interaction parameters (BIPs) available in the Standard database are automatically loaded.

Set the pressure to 1 atm (default value).

Change the temperature units from Kelvin to Celsius in the unit system.

Click on "*Azeotropes*" to identify the possible azeotropes in the mixture.

RESIDUE CURVE
Pressure 1 atm
Edit the calculator
Extractive profiles
🧾 Extractive profiles data
RESULTS — 🗛
Fractions Molar -
► ① Unit system
CALCULATIONS — 🗸
Azeotropes
Boundaries
lsovolatilities
📓 Liquid-Liquid equilibrium
Residue curve
Ser Numerical parameters
🤟 Graphic styles
Export to MS Excel
Sketch

Residue curve...

The following table appears and displays boiling points of pure components as well as binary and ternary azeotropes.

									- • ×
RESIDUE CURVE	This window	v helps you to detern	nine azeotropes a	and to plot the resid	ue curves.				
DATA 🔺	Project Acetone - Methanol - MEK residue curve calculation							- 0	
Pressure 1 atm 💌	Azeotropes	Boundaries Isovola	tilities Liquid Li	quid equilibrium	esidue cunte Ternano	diagram			
M Edit the calculator	Sampling	compositions (Molar)	unites Erquita-Er	data edamortani i	estade carre i remary.	angram			
Extractive profiles	ACETONE	ACETONE METHANOL METHYL ETHYL KETONE				id.			
Euler shire profiler sists	0,06667	0,060	67	0,86666		R Delete			
24 Catractive promes data	0,06667	0,866	566	0,06667	Le De				
RESULTS — 🔺	0,86666	0,066	67	0,06667	🖻 Me	🖻 Move up			
Fractions Molar 💌					📭 Me	ove down			
1 Unit system									
CALCULATIONS — A	Azeotrope	s							
Azeotropes	Pure ?	Name	Binary	Ternary	System	Temperature (K)	ACETONE	METHANOL	METHYL ETHYL K
44			Unknown	Saddle	Homogeneous	329,287	1	0	0
Boundaries	×	ACETONE	UTKHOWH	Sugare					
Boundaries		METHANOL	Unknown	Stable	Homogeneous	337,685	0	1	0
Boundaries		METHANOL METHYL ETHYL KET	Unknown O Unknown	Stable Stable	Homogeneous Homogeneous	337,685 352,492	0 0	1 0	0 1
a Boundaries a Isovolatilities a Liquid-Liquid equilibrium	Y Y	ACETONE METHANOL METHYL ETHYL KET Azeotrope - 1	Unknown O Unknown Unstable	Stable Stable Unstable	Homogeneous Homogeneous Homogeneous	337,685 352,492 328,543	0 0 0,791229200979475	1 0 0,208770799020525	0 1 0
a Boundaries Bi Isovolatilities Bi Liquid-Liquid equilibrium Residue curve		ACEIONE METHANOL METHYL ETHYL KET Azeotrope - 1 Azeotrope - 2	Unknown D Unknown Unstable Unstable	Stable Stable Unstable Saddle	Homogeneous Homogeneous Homogeneous Homogeneous	337,685 352,492 328,543 337,142	0 0 0,791229200979475 0	1 0 0,208770799020525 0,833992231081272	0 1 0 0,166007768918728
Boundaries Esovolatilities Eliquid-Liquid equilibrium Residue curve		ACETONE METHANOL METHYL ETHYL KET Azeotrope - 1 Azeotrope - 2	Unknown O Unknown Unstable Unstable	Stable Stable Unstable Saddle	Homogeneous Homogeneous Homogeneous Homogeneous	337,685 352,492 328,543 337,142	0 0 0,791229200979475 0	1 0 0,208770799020525 0,833992231081272	0 1 0 0,166007768918728
Boundaries Ecovolatilities Eliquid-Liquid equilibrium Economic curve		ACETONE METHANOL METHYL ETHYL KET Azeotrope - 1 Azeotrope - 2	Unknown O Unknown Unstable Unstable	Stable Stable Unstable Saddle	Homogeneous Homogeneous Homogeneous Homogeneous	337,685 352,492 328,543 337,142	0 0 0,791229200979475 0	1 0 0,208770799020525 0,833992231081272	0 1 0 0 0.166007768918728
Boundaries Erovolatilities Erovolatilities Eliquid-Liquid equilibrium Residue curve OPTIONS Mumerical parameters		ACETONE METHANOL METHYL ETHYL KET Azeotrope - 1 Azeotrope - 2	Unknown O Unknown Unstable Unstable	Stable Stable Unstable Saddle	Homogeneous Homogeneous Homogeneous Homogeneous	337,685 352,492 328,543 337,142	0 0 0,791229200979475 0	1 0 0,208770799020525 0,833992231081272	0 1 0 0 0.166007768918728
Boundaries Isovolatilities Provide curve OPTIONS Numerical parameters Graphic styles		ACEIONE METHANOL METHYL ETHYL KET Azeotrope - 1 Azeotrope - 2	Unknown O Unknown Unstable Unstable	Stable Stable Unstable Saddle	Homogeneous Homogeneous Homogeneous Homogeneous	337,685 352,492 328,543 337,142	0 0 0,791229200979475 0	1 0 0,208770799020525 0.833992231081272	0 1 0 0.166007768918728
Boundaries Isovolatilities Isovolatilities Residue curve OPTIONS Image: State of the state of t		ACEIONE METHANOL METHYL ETHYL KET Azeotrope - 1 Azeotrope - 2	Unknown O Unknown Unstable Unstable	Stable Stable Unstable Saddle	Homogeneous Homogeneous Homogeneous Homogeneous	337,685 352,492 328,543 337,142	0 0 0,791229200979475 0	1 0 0,208770799020525 0,833992231081272	0 1 0 1 0 0.166007768918728
Boundaries Isovolatilities Isovolatilities Isovolatilities Residue curve OPTIONS Sector Graphic styles Isovolatilities Sketch		ACEIONE METHANOL METHVL ETHVL KET Azeotrope - 1 Azeotrope - 2	Unknown D Unknown U Unstable Unstable	Stable Stable Unstable Saddle	Homogeneous Homogeneous Homogeneous Homogeneous	337,685 352,492 328,543 337,142	0 0 0,791229200979475 0	1 0 0,208770799020525 0.833992231081272	0 1 0 1 0 0.166007765918728

This system presents two homogeneous azeotropes (acetonemethanol and methanol-MEK) and no ternary azeotrope.

- Stable nodes are represented by a square (MEK and methanol).
- Unstable nodes are represented by a circle (acetone-methanol azeotrope).
- Saddle points are represented by a triangle (MEK-methanol azeotrope and acetone).

This graph gives a simplified representation of the ternary diagram.

In each relevant cells, enter the temperatures calculated in the previous table. In this example there is no ternary azeotrope (cell #7) and no binary azeotrope between heavy and light (cell #6). All other cells can be filled.

Click on "Sketch...".

Azeotropes

Pure ?	Name	Binary	Ternary	System	Temperature (°C)	ACETONE	METHANOL	METHYL ETHYL K
✓	ACETONE	Unknown	Saddle	Homogeneous	56,1366	1	0	0
✓	METHANOL	Unknown	Stable	Homogeneous	64,5348	0	1	0
✓	METHYL ETHYL KETC	Unknown	Stable	Homogeneous	79,3424	0	0	1
	Azeotrope - 1	Unstable	Unstable	Homogeneous	55,3933	0,791229200979474	0,208770799020526	0
	Azeotrope - 2	Unstable	Saddle	Homogeneous	63,9921	0	0,833992231081272	0,16600776891872

As soon as temperatures are provided, arrows appear between the binaries. It shows the direction of residue composition when increasing the temperature.

You can copy this graph into other applications.

Close the sketch window to go back to the main interface. Click on "*Boundaries*" and then on the "*Ternary diagram*" tab.

A *distillation boundary* corresponds to a frontier that can not be crossed by distillation.

The presence, location and structure of the distillation boundaries are crucial to evaluate the distillation feasibility. For each distillation column, the distillate and the bottom products must be in the same distillation region.

© 2021 ProSim S.A. All rights reserved

Click on the "Ternary diagram" tab to view the graph.

You can add more composition samples in order to have additional residue curves and a more comprehensive analysis of the system.

Here, we enter 6 different compositions corresponding to 6 different residue curves R1 to R6.

The direction of the residue curves goes from the lightest boiling point (acetonemethanol azeotrope) toward MEK or methanol, depending on the initial composition.

The location of the feed point determines the distillation region of the potential distillate and product.

You can switch the diagram summits, and modify the graphical properties of the diagram and the curves. You can also copy the diagram into other documents or save it as a picture.

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

***:** +1 215 600 3759