Getting started with Simulis[®] Thermodynamics

Use Case 8: Fitting binary interaction parameters from experimental data in Excel

Software & Services In Process Simulation

We guide You to efficiency

© 2021 ProSim S.A. All rights reserved.

Introduction

Some thermodynamic models require binary interaction parameters (BIPs) to correctly predict fluid phase equilibria.

Unfortunately, these BIPs are not always available in the software database or in the literature.

The present document shows how to estimate the BIPs of an Ethanol - Ethyl Acetate mixture, from a small set of experimental data (provided in the attached Excel file), using Simulis Thermodynamics in Excel.

It is to be noted that the accuracy and reliability of the estimated values strongly depend on the set of experimental data. They should be used for the temperature range in which the experimental data were retrieved. Outside this range the predictive capabilities of the model is not guaranteed. Larger are the temperature and pressure ranges, better it is.

> To perform this example, it is necessary to have access to the "software component" version of Simulis Thermodynamics, and use it through Excel.

Before studying this case, it is recommended to consult "Getting Started with Simulis Thermodynamic, Case 1" that explains how to insert a Simulis object in Excel, select components and define a thermodynamic system.

Step 1: Create the spreadsheet

 In Excel, create the spreadsheet with the experimental data corresponding to the liquid and vapor phase compositions of the mixture at the thermodynamic equilibrium.

-	• ÷ × 🗸	fx			
	С	D	E	F	G
	D (E	xperimental data		
	Reference	F. Mato et al., An. Qu	iim. Ser. A., 1984, V	/ol. 80, p. 338	
	Р т	liquid phage	fraction (v)	Vapor phase	fraction (u)
	°C				
	79.20		1 0000		1 0000
	70.30	0.0000	0.0970	0.0000	0.0700
	78.00	0.0130	0.9070	0.0500	0.9700
	77.80	0.0220	0.3700	0.060.0	0.5500
	76.70	0.0300	0.3700	0.0000	0408.0
	76.10	0.0950	0.9250	0.1340	0.0000
	76.00	0.0970	0.9030	0.1750	0.8250
	75.20	0 1350	0.8650	0.2300	0 7700
	75.10	0.1360	0.8640	0.2320	0 7680
	74.40	0,1500	0.8500	0.2490	0.7510
	73.40	0.2570	0.7430	0.3510	0.6490
	72.70	0.3310	0.6690	0.4100	0.5900
	72.80	0.3320	0.6680	0.4040	0.5960
	72.60	0.3600	0.6400	0.4220	0.5780
	72.20	0.4620	0.5380	0.4950	0.5050
	72.10	0.5450	0.4550	0.5450	0.4550
	72.20	0.6280	0.3720	0.5920	0.4080
	72.40	0.6810	0.3190	0.6350	0.3650
	72.70	0.7740	0.2260	0.6810	0.3190
	73.40	0.8270	0.1730	0.7280	0.2720
	73.60	0.8320	0.1680	0.7630	0.2370
	74.40	0.8900	0.1100	0.8380	0.1620
	74.60	0.9170	0.0830	0.8650	0.1350
	75.30	0.9360	0.0640	0.9000	0.1000
	77.10	1.0000	0.0000	1.0000	0.0000

The data set can be either at constant temperature (isotherm) or constant pressure (isobar). Here we are at constant pressure, however the temperature varies only by 1,20 °C which is hardly sufficient to estimate the temperature dependent parameters. It is possible but it is highly recommended to re-run the estimation with additional sets of data.

Step 2: Insert a Simulis Thermodynamics calculator and configure the thermodynamic profile

Step 2: Insert a Simulis Thermodynamics calculator and define the thermodynamics

Select the components: Ethyl-Acetate and Ethanol

Step 2: Insert a Simulis Thermodynamics calculator ⁶ and define the thermodynamics

Select the thermodynamic model: NRTL

SThermodynamic calculator editor						
CALCULATOR FILE Open Save as PACKAGE Calculate Export as a PSF file CALCULATOR FILE COMPOUND MODEL PACKAGE FILE FILE FILE FILE FILE FILE FILE FIL	Intext of your thermodynamic calculator RAMETERS Registry Cas Number COMPOUNDS FILE FILE Open Save as Thermodynamic calculator editor					- 🗆 X
Clagrams Retidue Export as a PVT file		This window helps you to define the COMPOUNDS MODEL B	context of your thermodynamic ca	lculator		
	ACKAGE	Name	NRTL	•		
Name Comments	SERVICES 🔺	Profile	NRTL	•		 Parameters Thermodynamic assistant
Calculator type Native	 Export as a PSF file Diagrams Residue 	Approach type Equation of state Alpha function	From activity coefficients Perfect gas Not defined	•	8	Thermodynamic help Use a specific model for pure water Advanced
Show the expert mode	🔹 Export as a PVT file	Mixing rules Activity coefficient model	Not defined		0	■ Water-hydrocarbons model Sol A <mark>6,25043</mark>
	MODIFICATIONS	Pure liquid fugacity standard state Liquid molar volume Transport properties	Vapor pressure Ideal mixture	•		Sol B 4015,3 The liquid phase splitting is taken into
	CONFIGURATION A	Enthalpy calculation User-defined thermodynamic model	H*=0, ideal gas, 25°C, 1 atm	•	8	- account
e that the "Binaries" tab ears only when a modynamic model that ures BIPs is selected.	Comments Calculator type Native	Comments :	Model index 1	*		
and bir 313 Selected.						Ok Cancel

Step 3: Change the unit system

 The default unit system is in Pa and K. Our data are provided in mmHg and °C, therefore we need to adapt the unit system to avoid any conversion calculation.

В	С	D
Simulis Calculator, Simulis Calculato	E l'Atha Calaulatar	Ri
	Edit the input unit system	
	Edit the output unit system About	

Right-click on the Calculator and select Edit the input unit system...".

APPLICATION UNIT SYSTEM	Use this window to modify the un application.	it system used by your
	Quantity	∆ Unit
hoose a predefined unit system in this list and	Molar density	mol/m3
nck Apply system to use theses units in your	Molar enthalpy, LHV or HHV	J/mol
	Molar entropy, Cp or Cv	J/mol/K
ISO	Molar flow rate	kmol/s
ProSim	Molar mass	kg/mol
British	Molar volume	m3/kmol
Application default	Percentage	%
	Power	J/s
	Pressure	Pa 🔻
	Pressure drop	Pa 🔺
	Quadripole moment	atm
	Resistivity	barye
	Revolution speed	mmHq
00LS 🔺	Surface tension	kPa MPa
Convito the clinboard	Temperature	K
Copy to the clipboard	Temperature drop	K
Paste from the clipboard	Thermal conductivity	W/m/K

The unit system window opens. Scroll down to find "*Pressure*", then select "*Pa*" and change it to "*mmHg*". Repeat the operation for the temperature, then press "*OK*".

Step 3: Change the unit system

• Repeat the operation for the output unit system.

Right click on the Calculator and select "Edit the output unit system...".

If no change is made, the output results of the calculation will be provided in the default unit system.

The unit system window opens. Scroll down to find "*Pressure*", then select "*Pa*" and change it to "*mmHg*". Repeat the operation for the temperature, then press "*OK*".

Step 4: Create a table for binary interaction parameters initialization and results

- This table enables to provide the initialization values for the BIP.
- The NRTL model requires 6 parameters (Cij0, Cji0, aij0, Cij(T), Cji(T), aij(T)).
 Other models may need more or less parameters. You can check the calculator's "binaries" tab to know the exact number of parameters that are required.

• Set up another table that will show the equilibrium calculation results (temperature, liquid and vapor phase fraction and equilibrium constants).

G	Н	I.	J	К	L	М	Ν	0
Binary interact	ion parameters							
aij0	CijT	CjiT	aijT					
0.2	0	0	0					
					Coloulated value			
					Calculated value			
fraction (v)		т	Liquid phace	fraction (v)	Vanor phase	fraction (v)	Fauilibrium	onstant (Ki)
1.0000		U.	EINTE AGETATE	ETHANOL	EINTLAGETATE	ETHANOL	EINTEACETATE	ETHANOL
0.0700								
0.9700								
0.9500								
0.9340								
0.8000								
0.0240								
0.8230								
0.7680								
0.7510								
0.6490								
0.5900								
0.5960								
0.5780								
0.5050								
0.4550								
0.4080								
0.3650								
0.3190								
0.2720								
0.2370								
0.1620								
0.1350								
0.1000								
0.0000								

Insert the Simulis calculator function:

? X

Go

Cancel

-

OK

- Select the first line of the table and click on the MS-Excel insert function button.
- In the "Insert function" window category list, select Simulis Calculator.
- In the list of function, select "stCALFlashWPKij" which calculates the temperature, liquid and vapor phase fractions and equilibrium constants at given pressure and vapor ratio.

4. Set the function arguments (see next page)

Enter the name of the calculator.

Select the cell in which the pressure is defined. Insert the "\$" sign to keep the selection constant when expanding the function through the table.

Vapor ratio is set to 0 as we will vary the liquid composition (next cell).

Select the cells in which the liquid composition is defined.

Set the composition type to 0 as the composition is molar.

Scroll down to get other arguments of the function...

There is no initialization therefore "Init" fields remain blank

Results type is set to 0 as we have molar experimental data

Scroll down to configure the other arguments of the function (see next page)...

When completed, press "*CRTL* + *SHIFT* + *ENTER*" to insert the functions in all the selected cells. If you press "*OK*", only the first cell will be configured correctly.

T	Liquid phase	fraction (x)	Vapor phase	fraction (y)	Equilibriun	n constant	(Ki)		a final li	والمتحرمين	
°C	ETHYL ACETATE	ETHANOL	ETHYL ACETATE	ETHANOL	ETHYL ACETAT	E ETHA	ANOL	Select th	e first li	ne and e	xpand
'8,31	0,0000	1,0000	0,0000	1,0000	1,037	1	1,0000	vortically	throug	h tha t	abla (a
							ĭ	ventically	, moug	n the ta	able (C
								conv-nas	to it in o	thar lines	\
								_ copy-pas)
				_	,	<u> </u>	,				
								Calculated value			
				-							
					Liq	uid phase	fraction (x)	Vapor phase	fraction (y)	Equilibrium o	constant (Ki)
					ETHYLA		ETHANOL	ETHYL ACETATE	ETHANOL	ETHYL ACETATE	ETHANOL
				/8.31		0.0000	1.00	0.0000	1.0000	1.03/1	1.0
				70.30		0.0130	0.90	0.0135	0.9005	1.0367	0.9
				78.28		0.0220	0.37	00 0.0220	0.9772	1.0364	0.3
				78.24		0.0300	0.92	90 0.0735	0.9265	1.0348	0.9
				78.22		0.0950	0.90	50 0.0982	0.9018	1.0340	0.9
				78.22	2	0.0970	0.90	30 0.1003	0.8997	1.0339	0.9
				78.18	}	0.1350	0.86	50 0.1394	0.8606	1.0327	0.9
				78.18	}	0.1360	0.86	40 0.1404	0.8596	1.0327	0.9
				- 78.17	/	0.1500	0.85	00 0.1548	0.8452	1.0322	0.9
				78.06		0.2570	0.74	30 0.2643	0.7357	1.0286	0.9
			_	77.98		0.3310	0.66	0.3396	0.6604	1.0260	0.9
				77.00		0.3320	0.66	00 0.3406	0.6594	1.0260	0.9
				77.84		0.3600	0.64	80 0.3690	0.0310	1.0250	0.9
				77 75		0.5450	0.00	50 0.5549	0.4451	1.0182	0.9
				77.66	5	0.6280	0.37	20 0.6375	0.3625	1.0151	0.9
			,	77.60)	0.6810	0.31	90 0.6899	0.3101	1.0130	0.9
				77.49)	0.7740	0.22	.60 0.7812	0.2188	1.0094	0.9
				77.42	2	0.8270	0.17	30 0.8330	0.1670	1.0072	0.9
				77.41		0.8320	0.16	80 0.8378	0.1622	1.0070	0.9
				77.34		0.8900	0.11	00 0.8941	0.1059	1.0046	0.9
				77.31		0.9170	0.08	30 0.9202	0.0798	1.0035	0.9
				77.28		0.9360	0.06	40 0.9385	0.0615	1.0027	0.9
								= 0000			

Step 6: Calculate experimental data versus calculated data deviation

Create a third table which will show the difference between the experimental data and the calculated data of temperature and vapor fraction for each component. The function is:

absolute value of (experimental value – calculated value)/experimental value

Deviation						
On T	On y ₁	On y ₂				
0.00013196		0				
2.48008E-05	0.550773122	0.01703422				
0.003711947	0.543989321	0.028631017				
0.006194515	0.52903184	0.037383406				
0.02011339	0.451711093	0.06989525				
0.027851503	0.441868313	0.09437964				
0.029178401	0.426898162	0.090554156				
0.03963369	0.393855982	0.117645293				
0.041004942	0.394649607	0.119217069				
0.050614066	0.378198817	0.125394814				
0.063464989	0.246893493	0.133527914				
0.072654147	0.171703299	0.119319241				
0.071166377	0.156891196	0.106349066				
0.073712646	0.125624233	0.091718731	_			
0.078148245	0.04679454	0.045867915	Rei			
0.078373899	0.018222931	0.021827467	_			
0.075578095	0.076806704	0.111445022				
0.071759223	0.086415753	0.150339734				
0.065819614	0.147200598	0.314243284	-			
0.054778175	0.144191076	0.385923173				
0.051828634	0.098083752	0.315771742	_			
0.039552805	0.066974037	0.346445945				
0.036311044	0.063837286	0.409031501				
0.026357877	0.042823267	0.385409407	_			
0.00133061	0					

 y_1 is the vapor fraction of Ethyl Acetate, y_2 is the vapor fraction of Ethanol.

In each cell, enter the formula defined above. For the first cell, it will be "=ABS(F21-L21)/F21". F21 and L21 define respectively the cells with experimental and calculated values for one temperature (see purple arrows below). Insert corresponding functions for y_1 and y_2 (see red arrows below).

The calculation will use the Excel solver to determine the parameters which will minimize the global deviation criterion. This criterion is defined here as the sum of the square of the deviation values.

	Deviation	
On T	On y ₁	On y ₂
0.00013196		(
2.48008E-05	0.550773122	0.01703422
0.003711947	0.543989321	0.028631017
0.006194515	0.52903184	0.037383406
0.02011339	0.451711093	0.06989525
0.027851503	0.441868313	0.09437964
0.029178401	0.426898162	0.090554156
0.03963369	0.393855982	0.117645293
0.041004942	0.394649607	0.119217069
0.050614066	0.378198817	0.125394814
0.063464989	0.246893493	0.133527914
0.072654147	0.171703299	0.119319241
0.071166377	0.156891196	0.106349066
0.073712646	0.125624233	0.091718731
0.078148245	0.04679454	0.045867915
0.078373899	0.018222931	0.021827467
0.075578095	0.076806704	0.111445022
0.071759223	0.086415753	0.150339734
0.065819614	0.147200598	0.314243284
0.054778175	0.144191076	0.385923173
0.051828634	0.098083752	0.315771742
0.039552805	0.066974037	0.346445945
0.036311044	0.063837286	0.409031501
0.026357877	0.042823267	0.385409407
0.00133061	0	
Blobal criterion		3.129135581

Enter the formula below the deviation table: *"=sum.square (T21:V45)"*.

T21:V45 represents the table cells and will vary according to the design of your spreadsheet.

Press "Enter" to obtain the value: 3.129135581

Open the solver and minimize the criterion.

To open the solver window, select "*Tools / Solver*" in the MS Excel menu. (If not activated, select "*Additional add-in*" and check the solver option).

The target cell is the one to be minimized, (the global criterion cell).

Select the Minimization action.

The variable cells are the BIPs cells. Select only C_{ij}^{0} and C_{ji}^{0} because a_{ij}^{0} has to remain at 0.2 and the temperature range corresponding to the experimental data is not wide enough to have a good estimation of C_{ij}^{T} , C_{ji}^{T} and a_{ij}^{T}

Then press "Solve"

Compounds Binary interaction parameters							
1	2	Cij0	Cji0	aij0	CijT	CjiT	aijT
ETHYL ACETATE	ETHANOL	-48,94021736	635,3978483	0,2	0	0	0

- BIPs are calculated. The new global criterion is 0,035 (this value depends on the solver parameters).
- To verify the consistency of your estimation, plot the curves corresponding to liquid / vapor fractions for each components (x1-y1 and x2-y2) and compare the calculated curves with the experimental curves.

Ethyl Acetate

Ethanol

Limit of the method

- Number of experimental data
- Number of BIPs to fit
- Number of possible solutions
- Numerical method and parameters of Excel solver

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

*****: +1 215 600 3759

www.prosim.net info@prosim.net