Optimizer as a CAPE-OPEN Unit Operation

2007 AIChE Annual Meeting – Topical D: 4th US CAPE-OPEN Conference

Authors:

Martin Gainville, Pascal Roux: IFP

Alain Vacher, Philippe Baudet: ProSim SA Michel Pons: Michel Pons Technologie SA (for TOTAL) Didier Paen: RSI - Dynamic Simulations Solutions

Content

- Introduction
- Problem statement
- Optimizer integration and validation
- Case study
- Conclusion

Energy Environment

Introduction

- Design and operation of oil & gas production systems require more and more advanced process simulations
 - Multiple software solutions to address multiple knowledge domains
 - For integrated simulations from reservoir to process, seamless integration of different provider solutions is needed
 - Numerous issues to be resolved when coupling these solutions
 - Components interoperability
 - Data consistency
 - Numerical consistency

Introduction

- To address these requirements, TOTAL and IFP have led a research collaborative project
 - TINA project based on INDISS Process Modelling Environment

Purpose of the study

- Extends modular strategy of INDISS for performing steady-state optimizations
 - Using a 3rd party optimization module within INDISS architecture
- In a CAPE-OPEN interoperability framework
 - CAPE-OPEN PME: INDISS
 - TINA pipeline modules are CAPE-OPEN compliant
 - Optimizer wrapped as a CAPE-OPEN unit operation to be easily integrated within INDISS architecture

Problem statement

- Network variables: x
 - Unit operation parameters (ex: choke opening), pressure, flow rate, partial flow rate, ...
- Function to optimize: f(x)
 - Min of cost, max of Net Present Value, max of production, ...
- Equality constraints
 - N(y) = 0, $y \subseteq x$, network equations
 - Conservation equations, recycling equations, homogeneous pressure at nodes, ...
 - Z(x) = 0, other specifications
- Inequality constraints
 - $C(x) \leq 0$
 - Lower bound $\leq x \leq Upper bound$

Problem statement

Solving mechanism: a sequential modular approach and an "Unfeasible path" strategy

Optimizer integration

- OPTI module: optimizer
 - Native optimizer of ProSimPlus PME (ProSim SA)
 - Applied to convergence of NLP optimization problems
 - Designed for a sequential modular approach
 - Unfeasible path strategy is recommended
 - Jacobian Matrix is estimated by numerical differentiation
 - Physical models are complex and implicit therefore analytical derivatives are not available
- OPTI wrapped as a CAPE-OPEN unit operation (CO-OPTI)
 - Specific parameter to check the optimizer convergence
 - Data transfer using CAPE-OPEN information streams

Optimizer integration

- INDISS PME has been adapted: INDISS-TINA
 - To check the convergence of the optimizer
 - To manage tear streams solved by CO-OPTI
 - To establish convenient calculation order
 - CO-OPTI made last UO in the maximum recycle sequence
- CO-OPTI ICapeUnit.Calculate() method
 - Retrieves values of constraints and objective function through information streams
 - Transfers data to OPTI that gives new iterative values in return
 - Updates CO-OPTI outputs variables with the new iterative values
 - Including recycle material streams which are flashed
 - Updates the convergence status (flag parameter)

Validation on a simple linear problem

Within ProSimPlus PME

- ProSimPlus is a CAPE-OPEN compliant PME
- Native OPTI module in ProSimPlus and CO-OPTI used as CAPE-OPEN UO in ProSimPlus give identical results
- Within ProSimPlus and INDISS using CO-OPTI as a CO UO
 - Convergence path and final results are identical in both PMEs

Cost optimization of a sub-sea production system

- Target function: minimize the design cost of the system
- Cost of pipe installation + cost of multiphase pump

$$C_{Line} = L \left(\alpha D^{2} + \beta D + \gamma \right)$$
$$C_{Pump} = A + B W_{Pump}^{C}$$

$$W_{Pump} = Q \Delta P$$

- Optimization parameters
 - Line diameter
 - Pump useful power (or differential pressure)
- Equality constraint (operational constraint)
 - Topside arrival pressure equal to 15 bars
- Inequality constraints
 - Maximum Pump useful power: 1.2 MW
 - Line diameter: from 8 to 12 inches

Demo: CO-OPTI within INDISS-TINA

2007 AIChE Annual Meeting - Topical D: 4th CAPE-OPEN US Conference - Salt Lake City, Utah

Iterations

Iterations

Conclusion

CO-OPTI integrated and used successfully in INDISS as a CAPE-OPEN Unit Operation

- Use of CAPE-OPEN specifications has reduced development time for integrating CO-OPTI into INDISS-TINA
 - CO-OPTI easily plugged into INDISS-TINA PME
 - Recycle material streams easily handled
 - CAPE-OPEN information streams useful for data transfer

CAPE-OPEN enables optimizer integration in sequential modular PMEs

Thank you for your attention

- Acknowledgements to TOTAL, RSI, ProSim SA for their contribution to this work
- Questions?
- Additional explanations will be provided tomorrow morning during the CAPE-OPEN Interoperability Workshop session

Sensitivity study to the transportation distance

- Optimizations are performed for several distances
 - **5**, 10, 15, 20 and 25 km

Three design options

- Option 1: system designed with the maximum specified pipe diameter (Pipe diameter of 12 inches),
- Option 2: system designed with the maximum pump unit capacity (Pump unit of 1.2 MW),
- Option 3: optimum solution calculated by CO-OPTI

Normalized overall cost

© IFP

Over cost in percentage of the optimum cost

Optimizer integration

Schematic view

- Calculation order
 - {UO1, UO2, UO3, Evaluation module, UO5, UO4, CO-OPTI}