Getting started with Simulis[®] Pinch Water module

Use Case 2: Water integration of an acrylonitrile plant - Advanced use of Simulis Pinch Water

Release Simulis Pinch 2.0.0

Software & Services In Process Simulation

We guide You to efficiency

This getting started shows you the use of optional constraints with Simulis Pinch Water to perform an advanced process water integration.

This document follows the getting started "Use Case 1: Water integration of an acrylonitrile plant – First steps with Simulis Pinch Water"

This guide is organized as follows:

- Step 1: Adding a constraint on zones
- Step 2: Adding a distance constraint between streams
- Step 3: Adding an incompatibility matrix
- Step 4: Adding a constraint of "difficulty" between streams

Introduction

A first step before the use of optional constraints is to reshape the Microsoft[™] Excel sheet input data:

1 Click on the	Water network analysis	8
	Reuse characterization	
Optional constraints button	Minimum mass flowrate for reuse (kg/s)	0
	Minimum percentage of water reuse / MWR (%)	0
	Maximum coupling degree 🕐	2
	Allow stream division	Sinks selection order 🕐
	Satisfy the load	Sources selection order
	Water network design	
	Selection method: O Automatic	C Semi-Automatic C Manual
	Criteria for automatic reuse selection	
	First criterion Maximum (Flowrate	e*Efficiency)
	Second criterion Coupling degree	•
	Third criterion Minimum distance	•
	Procedure stop criteria	
	Minimum threshold of flowrate / initial MWR (%	6) 100
	Maximum number of reuses	10
		Graphic options
	Optional constraints Help Defa	ault parameters < Return Calculate Cancel

Introduction

2. Click on the Generate tables button

Water Network Design: Optional constraints	8
Water Network Design: Optional constraints Use constraints on zone Use constraints on zone Intrazone reuses only Conditional interzone reuses Stream zones selection	Incompatibility matrix Selection Difficulty Maximum difficulty
Selection of the authorized source zones Selection of the authorized sink zones	Selection
Maximum distance Selection Help Generate	Tables Validate Cancel

Introduction

The input data (stream name, flowrates (F), contaminant measurement (C)) are then reshaped and optional tables are generated in a "Optional Tables" sheet:

	Input data			 						 		
Stream names	Mass flowrate (F)	Contaminant (C) measurement	Difficulty	Geom(x)	Geom(y)	Geom(z)	Stream Zone	Authorized sources streams zones	Authorized sinks streams zones	Incompatibility matrix	SK1	SK
SK1	5,8	1,00E+01								SR1	0	0
SK2	1,2	0,00E+00								SR2	0	0
SR1	- 0,8	0,00E+00								SR3	0	0
SR2	- 5,0	1,40E+01								SR4	0	0
SR3	- 5,9	2,50E+01										
SR4	- 1,4	3,40E+01					_					

Background picture size bounds							
Xmin Xmax Ymin Ymax							

The user defines the areas in which the different streams are present. For this example, 2 zones are defined:

Input data						
Stream names	Mass flowrate (F)	Contaminant (C) measurement				
SK1	5,8	1,00E+01				
SK2	1,2	0,00E+00				
SR1	- 0,8	0,00E+00				
SR2	- 5,0	1,40E+01				
SR3	- 5,9	2,50E+01				
SR4	- 1,4	3,40E+01				

Stream Zone	Authorized sources streams zones	Authorized sinks streams zones
1		
2		
1		
1		
1		
2		

In the optional constraints window:

- 1. Check **Use constraints on zone** box
- 2. Select the constraint to have only intrazone reuses (the proposed reuses are made only between the streams of the same zone)
- 3. Click on the button Stream zones selection button

Water Network Design: Optional constraints	X
Use constraints on zone Use constraints on zone Intrazone reuses only Conditional interzone reuses Stream zones selection Selection of the authorized source zones Selection of the authorized sink zones	Incompatibility matrix Selection Difficulty Selection Selection
Mapping Maximum distance Selection Help Generate	e Tables Cancel

Selection of the zones:

Input data						
Stream names	Mass flowrate (F)	Contaminant (C) measurement				
SK1	5,8	1,00E+01				
SK2	1,2	0,00E+00				
SR1	- 0,8	0,00E+00				
SR2	- 5,0	1,40E+01				
SR3	- 5,9	2,50E+01				
SR4	- 1,4	3,40E+01				

Di	fficulty
	1
	2
	1
	3
	2
	1

Geom(x)	Geom(y)	Geom(z)
20	15	
40	25	
100	35	
80	90	
50	30	
0	60	

Stream Zone	Au
1	
2	
1	
1	
1	
2	

	Background picture size bounds				
	Xmin	Xmax	Ymin	Ymax	Selection of the stream zones ? X
					1 column: stream zones
					SLS4:SLS9
🛛 Use c	onstraints on zone	0			OK Cancel
0 1	one				
	ntrazone reuses onl	у			
0	Conditional interzone	reuses			
	Stream zones se	lection	selection		
Selec	tion of the authorize	ed source zones			
Sele	ection of the authori	zed sink zones			

The results obtained by Simulis Pinch Water are the following: only 1 reuse is possible and it is located in the zone 1:

SUMMARY FOR THE WATER NETWORK

Initial number of possible reuse:	2
Cumulative percentage of water reuse:	83,82
Number of reuses:	1
Total water reuse (kg/s):	4,1
Water flowrate available to reuse (kg/s):	0,8
Additional required amount of fresh water(kg/s):	2,9
Amount of waste water (kg/s):	9,0
Remaining number of Sources:	4
Remaining number of Sinks:	1

RESULTS FOR THE AUTOMATIC DESIGN OF THE WATER NETWORK

					INPUT DATA	
Reuse		Sink			Source 1	
Item	Namo	Contaminant measurement T		Namo	Contaminant measurement	Target F
	Name Contaminant measurement (C) (ppm)		(kg/s)	Name	(C) (ppm)	(kg/s) 1
1	SK1	1,00E+01	5,8	SR2	1,40E+01	5,0

NO MORE REUSE IS POSSIBLE

Using zones constraints, the new water network can reuse 83.82% of the initial MWR

 \rightarrow Network efficiency has been degraded when adding constraints

Step 2: Adding a distance constraint between streams

With Simulis Pinch Water, it is possible to go beyond the concept of zones. The user can define coordinates of streams on the industrial site. For example, on a 2D map:

Difficulty

Input data					
Stream names Mass flowrate (F)		Contaminant (C) measurement			
SK1	5,8	1,00E+01			
SK2	1,2	0,00E+00			
SR1	- 0,8	0,00E+00			
SR2	- 5,0	1,40E+01			
SR3	- 5,9	2,50E+01			
SR4	- 1,4	3,40E+01			

Geom(x)	Geom(y)	Geom(z)
20	15	
40	25	
100	35	
80	90	
50	30	
0	60	

Step 2: Adding a distance constraint between streams

In the optional constraints window, the user must:

1. Select the coordinates

	Input data							
Stream names	Mass flowrate (F)	Contaminant (C) measurement		Difficulty	Geom(x)	Geom(y)	Geom(z)	
SK1	5,8	1,00E+01		1	20	15		The units of coordinates
SK2	1,2	0,00E+00		2	40	25		information and the maximum
SR1	- 0,8	0,00E+00		1	100	35		distance are identical
SR2	- 5,0	1,40E+01		3	80	90		(it is why they do not appear)
SR3	- 5,9	2,50E+01		2	50	30		
SR4	- 1,4	3,40E+01	l	1	0	60		
Ba Xmin	ackground picture s Xmax	size bounds Ymin	Ymax	Manuina a	election	2	×	
			<u> </u>	3 columns : SHS4:SJS9	x, y, z OK		Cancel	The zones constraint is not taken into account for this example with the distance constraint
2. Give th In this exar	ne maximum d nple, the cons	istance betwe traint is 65 m	en tv	wo stream	IS M	Mapping 🕐 aximum distan Selection	nce 65	ection

© 20

Step 2: Adding a distance constraint between streams

It is possible to modify the selection criteria for Simulis Pinch Water by choosing the most effective reuses and the closest ones:

Water network analysis	8
- Reuse characterization	٦
Minimum mass flowrate for reuse (kg/s)	
Minimum percentage of water reuse / MWR (%) 0	
Maximum coupling degree ?	
Allow stream division ? Sinks selection order	
Image: Satisfy the load Image: Optimized and the satisfy the load Image: Sources selection order	
Vater network design	
	_
Selection method:	
Criteria for automatic reuse selection	
First criterion Maximum efficiency	
Second criterion Minimum distance	
Third criterion No division	
Procedure stop criteria	
Minimum threshold of flowrate / initial MWR (%) 100	
Maximum number of reuses 10	
Graphic options	
Optional constraints Help Default parameters < Return Calculate Cancel	

Step 2: Adding a distance constraint between streams

Simulis Pinch Water proposes a new water network. For each proposed reuse, the distance between the streams is displayed

SUMMARY FOR THE WATER NETWORK

Initial number of possible reuse:	2
Cumulative percentage of water reuse:	63,12
Number of reuses:	2
Total water reuse (kg/s):	3,1
Water flowrate available to reuse (kg/s):	0,0
Additional required amount of fresh water(kg/s):	3,9
Amount of waste water (kg/s):	10,0
Remaining number of Sources:	3
Remaining number of Sinks:	0

RESULTS FOR THE AUTOMATIC DESIGN OF THE WATER NETWORK

		INPUT DATA				REUSE CHARACTERISTICS					
Reuse		Sink			Source 1		Source 1	Source 2	Total mass flourate	Fresh water	
Item	Nama	Contaminant measurement (C)	Target F	Mama	Contaminant measurement (C)	Target F	Mass flowrate	Mass flowrate	Indi mass nowrate	(kala)	Distance
	Name	(ppm)	(kg/s)	Name	(ppm)	(kg/s)	(kg/s)	(kg/s)	(Kg/S)	(Kg/S)	
1	SK2	0,00E+00	1,2	SR1	0,00E+00	0,8	0,8	0,0	1,2	0,4	60,8
2	SK1	1,00E+01	5,8	SR3	2,50E+01	5,9	2,3	0,0	5,8	3,5	33,5

NO MORE REUSE IS POSSIBLE

Step 3: Adding an incompatibility matrix

After adding zones constraint for local integration (step 1 of the document), the user can add incompatibility constraints.

It is then possible to add incompatibility constraints between the "process" streams (SR1, SR2 and SR3) with the boiler feed water (SK2)

Input data					
Stream names	Mass flowrate (F)	Contaminant (C) measurement			
SK1	5,8	1,00E+01			
SK2	1,2	0,00E+00			
SR1	- 0,8	0,00E+00			
SR2	- 5,0	1,40E+01			
SR3	- 5,9	2,50E+01			
SR4	- 1,4	3,40E+01			

Valid selection

Incompatibility matrix ??

Selection

Incompatibility matrix	SK1	SK2			
SR1	0	1			
SR2	0	1			
SR3	0	1			
SR4	0	0			
Incompatibility selection	atible	•		?	>
SQS4:SRS7	atible	e, sour	ces in rows, s	inks in (colur
-					

Step 4: Adding a constraint of "difficulty" between streams

The concept of **difficulty** allows to represent different concepts (viscosity, toxicity, flammability...).

In this example, some streams are more viscous and more toxic than others.

A difficulty value is given to each stream. The user then sets the maximum difficulty:

	Input data					<u></u>	
Stream names	Mass flowrate (F)	Contaminant (C) measurement		Difficulty		Geom(x)	Geom(
SK1	5,8	1,00E+01		1		20	15
SK2	1,2	0,00E+00		2		40	25
SR1	- 0,8	0,00E+00		1		100	35
SR2	- 5,0	1,40E+01		3		80	90
SR3	- 5,9	2,50E+01		2		50	30
SR4	- 1,4	3,40E+01		1		0	60
Bá	ackground picture s	ize bounds		Difficu	lty sel	ection	
Xmin	Xmax	Ymin	Ymax	1 colum SFS4:S	nn: dif F\$9	ficulties	
						0	К

The difficulty of a reuse is the sum of the difficulties of the two streams

Difficulty	
Maximum difficulty 3	
Selection Valid selection	

Geom(z)

Х

Cancel

Step 5: New water network

The constraints used are:

- Interzone reuses only (step 1)
- Incompatibility between some streams (step 3)
- Difficulty constraint (step 4)

Water Network Design: Optional constraints	X
Use constraints on zone	Incompatibility matrix
none Intrazone reuses only Conditional interactions	Selection Valid selection
O Conditional Interzone reuses	Difficulty
Stream zones selection Valid selection	Maximum difficulty 3
Selection of the authorized source zones	Selection Valid selection
Selection of the authorized sink zones	
Maximum distance 65	
Selection	
Help Genera	Validate Cancel

Step 5: New water network

Adding different constraints modifies the water network. The proposed network has only one reuse. This network can recover \approx 47% of MWR.

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

2: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

***:** +1 215 600 3759