## Getting started with Simulis<sup>®</sup> Pinch Water module

#### Use Case 3: Water integration of a refinery plant -Multi-contaminants analysis

**Release Simulis Pinch 2.0.0** 

Software & Services In Process Simulation



We guide You to efficiency

© 2021 ProSim S.A. All rights reserved.

#### Introduction

This getting started shows you the basics of Simulis Pinch Water in order to perform a multi-contaminants analysis of a process.

This guide presents the following parts:

- Step 1: Data generation in Microsoft™ Excel
- Step 2: Definition of the theoretical optimum of the process water consumptions
- Step 3: Design of a water network

This document follows the guide "Use Case 1: Water integration of an acrylonitrile plant – First steps with Simulis Pinch Water" based on a mono-contaminant analysis.

#### Step 1: Data generation in Microsoft<sup>™</sup> Excel

The data used in this document are based on a petroleum refinery plant. This example is studied in: *Gunaratnam M., « Automated Design of Total Water Systems », Ind. Eng. Chem. Res., 2005, 44, 588-599.* 

There are 3 limiting contaminants for the water reuse:

- **Suspended solids:** also named Total Suspended Solids (TSS) is the dry-weight of suspended particles and refers to all insoluble solids present in suspension in a liquid. The more water contains TSS, the more the turbidity increases.

The suspension is a "matrix" capable of adsorbing various contaminants, which can transform it and be transported. Thus, TSS is the most common industrial contaminant.

- **Hydrogen sulfide** ( $H_2S$ ): sulfur present in the  $H_2S$  is a contaminant for the catalysts and it is a generator of acid corrosion during combustion. It is necessary to limit its emissions as much as possible. For these reasons, methods of "hydro-desulphurization" are used in oil refineries, and "Claus" processes are performed to treat the H2S and produce pure sulfur.

- **Hydrocarbons:** hydrocarbons are contaminants for the steam stripping columns and for hydro desulphurization sections because they degrade the performance of equipment. We must therefore limit the reuse with high concentrations of hydrocarbons.

#### The data are presented below:

| Operation                       | Flowrate (t/h) | Contaminant                      | C <sub>in</sub> (ppm) | C <sub>out</sub> (ppm) |
|---------------------------------|----------------|----------------------------------|-----------------------|------------------------|
| Steam stripping                 | 50             | H.C.<br>H <sub>2</sub> S<br>S.S. | 0<br>0<br>0           | 15<br>400<br>35        |
| Hydro-desulphurization I        | 34             | H.C.<br>H <sub>2</sub> S<br>S.S. | 20<br>300<br>45       | 120<br>12500<br>180    |
| Desalter                        | 56             | H.C.<br>H <sub>2</sub> S<br>S.S. | 120<br>20<br>200      | 220<br>45<br>9500      |
| Ejector steam for vacuum column | 8              | H.C.<br>H <sub>2</sub> S<br>S.S. | 0<br>0<br>0           | 20<br>60<br>20         |
| Hydro-sulphurization II         | 8              | H.C.<br>H <sub>2</sub> S<br>S.S. | 50<br>400<br>60       | 150<br>8000<br>120     |

\*H.C.: Hydrocarbon

\*S.S.: Suspended solids (suspended matter)

#### Step 2: Definition of the theoretical optimum<sup>5</sup> of the process water consumptions

- 1. Run Simulis Pinch
- 2. Select the columns of the flowrates F, and of the measurements C (only numerical values, not the column headings, as shown in the screenshots below)

| ₽ 5° °°       | Ŧ                                 |                            |               |          |        |            |            | Book    | 1 - Excel   |                 |
|---------------|-----------------------------------|----------------------------|---------------|----------|--------|------------|------------|---------|-------------|-----------------|
| File Home     | Insert                            | Page Layout                | Formulas      | Data     | Review | View       | Add-ins    | ACROBAT | Q Tell      |                 |
| Simulis * Ir  | isert ▼ Duplio<br>Simulis Pinch \ | cate ▼ Move ▼ Rei<br>Water | name + Delete | ∗ Edit × |        |            |            |         |             |                 |
| Menu Commands | culition                          | Custom Toolb               | bars          |          |        |            |            | X       |             |                 |
| Type of a     | nalysis —<br>contaminan           | t                          |               |          |        | <b></b> -X |            |         |             |                 |
| • Multi co    | ontaminant                        | S                          |               |          | l 🖡    |            | ſ          |         | Stream name | s Mass flowrate |
| - Data defi   | nition —                          |                            |               |          |        | ▁J         | . 🚽        |         | SK-01       |                 |
| O Angreg      | ated data                         | (apprenated in             | dicator)      |          |        |            | · 🔺        |         | SK-02       |                 |
|               |                                   |                            | alcotory      |          |        |            | <b>.</b> I |         | SK-O4       |                 |
| • Raw da      | ata (mass f                       | lowrates and m             | easurements   | )        |        |            |            |         | SK-O5       |                 |
|               | •                                 | Vali                       | d coloction   |          | 1      |            |            |         | SR-O1       | -               |
| Pinch         | data select                       | ion                        | d selection   |          |        |            |            |         | SR-O2       | -               |
| Mass flowr    | atec unit                         | Г                          | + /h          |          |        |            |            |         | SR-O3       | -               |
| Mass nown     | ates unit                         | I_                         | yn            |          |        |            |            |         | SR-04       |                 |
| Number of     | contaminar                        | nts 🗌                      | 3 Val         | id value |        |            |            |         | SR-05       | -               |
| 🗌 Water ne    | twork ana                         | ysis                       | _             |          |        |            |            |         |             |                 |
| Options       | He                                | lp Al                      | bout          |          | Calcu  | late       | Cance      | ł       |             |                 |

| Input data   |                   |                 |                 |                 |  |  |  |  |
|--------------|-------------------|-----------------|-----------------|-----------------|--|--|--|--|
| Stroom nomos | Mass flowrate (E) | Contaminant (C) | Contaminant (C) | Contaminant (C) |  |  |  |  |
| Stream names | Widss HOwfale (F) | measurement 1   | measurement 2   | measurement 3   |  |  |  |  |
| SK-O1        | 50,0              | 0,00E+00        | 0,00E+00        | 0,00E+00        |  |  |  |  |
| SK-O2        | 34,0              | 2,00E+01        | 3,00E+02        | 4,50E+01        |  |  |  |  |
| SK-O3        | 56,9              | 1,20E+02        | 2,00E+01        | 2,00E+02        |  |  |  |  |
| SK-O4        | 8,0               | 0,00E+00        | 0,00E+00        | 0,00E+00        |  |  |  |  |
| SK-O5        | 8,0               | 5,00E+01        | 4,00E+02        | 6,00E+01        |  |  |  |  |
| SR-O1        | - 50,0            | 1,50E+01        | 4,00E+02        | 3,50E+01        |  |  |  |  |
| SR-O2        | - 34,0            | 1,20E+02        | 1,25E+04        | 1,80E+02        |  |  |  |  |
| SR-O3        | - 56,9            | 2,20E+02        | 4,50E+01        | 9,50E+03        |  |  |  |  |
| SR-O4        | - 8,0             | 2,00E+01        | 6,00E+01        | 2,00E+01        |  |  |  |  |
| SR-O5        | - 8,0             | 1,50E+02        | 8,00E+03        | 1,20E+02        |  |  |  |  |

Raw data

#### Step 2: Definition of the theoretical optimum<sup>6</sup> of the process water consumptions

1. Define the type of analysis and the data definition (multi contaminants analysis from raw data for this example)

| Water reuse calculation                                                                      | ×                                |
|----------------------------------------------------------------------------------------------|----------------------------------|
| Type of analysis                                                                             |                                  |
| C Mono contaminan                                                                            |                                  |
| Multi contaminant                                                                            | s <b>f</b>                       |
| Data definition                                                                              |                                  |
| C Aggregated data                                                                            | (aggregated indicator)           |
| Raw data (mass f                                                                             | owrates and measurements)        |
| Pinch data select                                                                            | tion Valid selection             |
| Mass flowrates unit                                                                          | t/h                              |
| Number of contamina                                                                          | nts 3 Valid value                |
| Uater network ana                                                                            | lysis                            |
| Options He                                                                                   | elo About Calculate Cancel       |
|                                                                                              |                                  |
| 2. Provide the units of the flowrates<br>and the number of contaminants (he<br>contaminants) | (F) 3. Click on <i>Calculate</i> |

#### Step 2: Definition of the theoretical optimum<sup>7</sup> of the process water consumptions

For a multi contaminants analysis (from raw data), the results of the diagnostic are provided for each contaminant taken independently of others.

Thus, 4 sheets are generated for the water pinch analysis:

- 1. The grand composite curve
- 2. The sinks and sources composite curves
- 3. The streams (sources streams and sinks streams)
- 4. The results of the pinch analysis (data and summary of results)

| Streams C2 | Water Pinch results C2 | Composite curves (C=f(dM)) C1 | Grand composite curve C1 | Composite curves (M=f(F)) C1 | Streams C1 | Water Pinch results C1 |
|------------|------------------------|-------------------------------|--------------------------|------------------------------|------------|------------------------|
|            |                        |                               |                          |                              |            |                        |

It is possible to aggregate these contaminants into a single indicator (according to an aggregation calculation defined by the user). In this case, the user chooses the "Aggregate data (aggregated indicator)" option for the definition of the data type.

This method is used to draw a single dataset (only 1 composite curve diagram, only 1 water pinch analysis...) and thus simplify the water pinch analysis.

This aggregation calculation can also be performed in ProSimPlus using the "Water Pinch Analysis" module with a multi-contaminants analysis.

| ~  | be of analysis                         |
|----|----------------------------------------|
| 2  | Mono contaminant                       |
| ۲  | Multi contaminants                     |
| Da | ta definition                          |
|    |                                        |
| O  | Aggregated data (aggregated indicator) |

# Step 2: Definition of the theoretical optimum<sup>®</sup> of the process water consumptions







With the « multi contaminant » analysis, the results of the diagnostic are displayed for each contaminant (independently of each other).

By analyzing the composite curves, it is possible to notice a MWR (green area) for each contaminant. The minimum MWR is the C2 contaminant (*i.e.*  $H_2S$  in our case) with 67 t/h.

If the user has a license for the use of Simulis Pinch, the tool can generate a water network whose purpose is to reuse a maximum of internal water in the process

| Water reuse calculation                    |
|--------------------------------------------|
| Type of analysis                           |
| C Mono contaminant                         |
| Multi contaminants                         |
| Data definition                            |
| C Aggregated data (aggregated indicator)   |
| Raw data (mass flowrates and measurements) |
| Pinch data selection Valid selection       |
| Mass flowrates unit t/h                    |
| Number of contaminants 3 Valid value       |
| ✓ Water network analysis                   |
| Options Help About Next > Cancel           |

1. Define the type of analysis and the data definition (multi contaminants analysis from raw data for this example)



1. Check the box *water network design* 

Firstly, the default values will be kept (Automatic selection of the reuses)

| Water network analysis                          |                   |               |           | 23      |
|-------------------------------------------------|-------------------|---------------|-----------|---------|
| Reuse characterization                          |                   |               |           |         |
| Minimum mass flowrate for reuse (t/h)           | 0                 |               |           |         |
| Minimum percentage of water reuse / MWR (%)     | 0                 |               |           |         |
| Maximum coupling degree 🕖                       | 2                 |               |           |         |
| Allow stream division                           | Sinks select      | tion order 🔞  |           |         |
|                                                 | Sources se        | lection order |           |         |
|                                                 |                   |               |           |         |
| Water patwork darian                            |                   |               |           |         |
| Vater network design                            |                   |               |           |         |
| Selection method: <ul> <li>Automatic</li> </ul> | C Semi-Automatic  | C Manual      |           |         |
| Criteria for automatic reuse selection          |                   |               |           |         |
| First criterion Maximum (Flowrat                | e*Efficiency)     | -             |           |         |
| Second criterion Coupling degree                |                   | •             |           |         |
| Third criterion Minimum distance                |                   | •             |           |         |
| Procedure stop criteria                         |                   |               |           |         |
| Minimum threshold of flowrate / initial MWR (   | %) 10             | 00            |           |         |
| Maximum number of reuses                        | 10                | )             |           |         |
|                                                 | 1                 |               |           |         |
|                                                 |                   |               | Graphic   | options |
| Optional constraints Help Def                   | ault parameters   | < Return      | Calculate | Cancel  |
|                                                 |                   |               |           |         |
|                                                 |                   |               |           |         |
|                                                 |                   |               |           |         |
|                                                 |                   | •             |           |         |
|                                                 | :к ()н <b>сан</b> | cinate        |           |         |

© 2021 ProSim S.A. All rights reserved.

A message will indicate the end of the calculations (when a stop criterion is met)

For this example, Simulis Pinch Water can no longer propose additional reuse and the construction of the water network stops because no additional reuse can be determined



Three additional sheets were generated:

- 1. Input Data
- 2. Water network results
- 3. Water network

| Initial number of possible reuse:18Cumulative percentage of water reuse:41,13Number of reuses:3Total water neuse (t/h):36,3Water flowrate available to reuse (t/h):0,0Additional required amount of fresh water(t/h):120,6Amount of waste water (t/h):120,6 | NAV FOR THE WATER NETWORK                       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------|
| Initial number of possible reuse:18Cumulative percentage of water reuse:41,13Number of reuses:3Total water reuse (t/h):36,3Water flowrate available to reuse (t/h):0,0Additional required amount of fresh water(t/h):120,6Amount of waste water (t/h):120,6 |                                                 |       |
| Cumulative percentage of water reuse:41,13Number of reuses:3Total water reuse (t/h):36,3Water flowrate available to reuse (t/h):0,0Additional required amount of fresh water(t/h):120,6Amount of waste water (t/h):120,6                                    | Init number of possible reuse:                  | 18    |
| Number of reuses:3Total water reuse (t/h):36,3Water flowrate available to reuse (t/h):0,0Additional required amount of fresh water(t/h):120,6Amount of waste water (t/h):120,6                                                                              | Cumulative percentage of water reuse:           | 41,13 |
| Total water reuse (t/h):36,3Water flowrate available to reuse (t/h):0,0Additional required amount of fresh water(t/h):120,6Amount of waste water (t/h):120,6                                                                                                | Number of reuses:                               | 3     |
| Water flowrate available to reuse (t/h):0,0Additional required amount of fresh water(t/h):120,6Amount of waste water (t/h):120,6                                                                                                                            | Total water veuse (t/h):                        | 36,3  |
| Additional required amount of fresh water(t/h): 120,6<br>Amount of waste water (t/h): 120.6                                                                                                                                                                 | Water flowrate available to reuse (t/h):        | 0,0   |
| Amount of waste water (t/h): 120.6                                                                                                                                                                                                                          | Additional required amount of fresh water(t/h): | 120,6 |
|                                                                                                                                                                                                                                                             | Amount of waste water (t/h):                    | 120,6 |
| Remaining number of Sources: 4                                                                                                                                                                                                                              | Remaining number of ources:                     | 4     |
| Remaining number of Sink: 2                                                                                                                                                                                                                                 | Remaining number of Sing:                       | 2     |

RESULTS FOR THE AUTOMATIC DESIGN OF THE WATER NETWORK

|       |                                 | Sink                                                                                                                                           |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name  | Conteminant<br>measurement (C1) | Contaminant<br>measurement (C2)                                                                                                                | Contaminant<br>measurement (C3)                                                                                                                                                                                                                           | Target F<br>(t/h)                                                                                                                                                                                                                                                                                                                                   | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contamina<br>measurement                                                                                                                                                                                                                                                                                                                                                                                     |
| SK-O2 | 2,00E+0                         | 3,00E+02                                                                                                                                       | 4,50E+01                                                                                                                                                                                                                                                  | 34,0                                                                                                                                                                                                                                                                                                                                                | SR-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,50E+01                                                                                                                                                                                                                                                                                                                                                                                                     |
| SK-O5 | 5,00E+01                        | 4,00E+02                                                                                                                                       | 6,00E+01                                                                                                                                                                                                                                                  | 8,0                                                                                                                                                                                                                                                                                                                                                 | SR-O4                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,00E+01                                                                                                                                                                                                                                                                                                                                                                                                     |
| SK-O3 | 1,20E+02                        | 2,00E+01                                                                                                                                       | 2,00E+02                                                                                                                                                                                                                                                  | 56,9                                                                                                                                                                                                                                                                                                                                                | SR-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,50E+01                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Name<br>SK-O2<br>SK-O5<br>SK-O3 | Name         Contaminant<br>measurement (C1)           SK-O2         2,00E+0           SK-O5         5,00E+01           SK-O3         1,20E+02 | Sink           Name         Contininant<br>measurement (C1)         Contaminant<br>measurement (C2)           SK-02         2,00E+01         3,00E+02           SK-05         5,00E+01         4,00E+02           SK-03         1,20E+02         2,00E+01 | Sink           Name         Contininant<br>measurement (C1)         Contaminant<br>measurement (C2)         Contaminant<br>measurement (C3)           SK-O2         2,00E+0         3,00E+02         4,50E+01           SK-O5         5,00E+01         4,00E+02         6,00E+01           SK-O3         1,20E+02         2,00E+01         2,00E+02 | Sink         Contaminant         Contaminant         Contaminant         Contaminant         Target F           Name         Contaminant         Contaminant         Contaminant         Target F         (t/h)           SK-O2         2,00E+0         3,00E+02         4,50E+01         34,0           SK-O5         5,00E+01         4,00E+02         6,00E+01         8,0           SK-O3         1,20E+02         2,00E+01         2,00E+02         56,9 | Sink         Contininant         Contaminant         Contaminant         Contaminant         Target F         Name           Nsk-02         2,00E+01         3,00E+02         4,50E+01         34,0         SR-01           SK-05         5,00E+01         4,00E+02         6,00E+01         8,0         SR-04           SK-03         1,20E+02         2,00E+01         2,00E+02         56,9         SR-01 |

NO MORE REUSE IS POSSIBLE

LIST OF THE STREAMS STILL REMAINING AFTER THE WATER NETWORK DESIG

| Stream | Mass flowrate (F) | Contaminant Contaminant |                  | Contaminant      |
|--------|-------------------|-------------------------|------------------|------------------|
| names  | (t/h)             | measurement (C1)        | measurement (C2) | measurement (C3) |
| SR-O2  | 34,0              | 1,20E+02                | 1,25E+04         | 1,80E+02         |
| SR-O5  | 8,0               | 1,50E+02                | 8,00E+03         | 1,20E+02         |
| SR-O3  | 56,9              | 2,20E+02                | 4,50E+01         | 9,50E+03         |
| SR-O1  | 21,7              | 1,50E+01                | 4,00E+02         | 3,50E+01         |
| SK-O1  | 50,0              | 0,00E+00                | 0,00E+00         | 0,00E+00         |
| SK-O4  | 8,0               | 0,00E+00                | 0,00E+00         | 0,00E+00         |

#### FRESH WATER CHARACTERISTICS

|   | Stream    | Mass flowrate (F)      | Contaminant |          | Contaminan | Conte         | minant                |            |               |
|---|-----------|------------------------|-------------|----------|------------|---------------|-----------------------|------------|---------------|
| S | treams C1 | Water Pinch results C1 | Reuse #3    | Reuse #2 | Reuse #1   | Water network | Water network results | Input data | Optional data |

The first part of the "Water network results" sheet summarizes the global information on water integration and on the water network

#### SUMMARY FOR THE WATER NETWORK

| Initial number of possible reuse:               | 18    |
|-------------------------------------------------|-------|
| Cumulative percentage of water reuse:           | 41,13 |
| Number of reuses:                               | 3     |
| Total water reuse (t/h):                        | 36,3  |
| Water flowrate available to reuse (t/h):        | 0,0   |
| Additional required amount of fresh water(t/h): | 120,6 |
| Amount of waste water (t/h):                    | 120,6 |
| Remaining number of Sources:                    | 4     |
| Remaining number of Sinks:                      | 2     |

In the present case, with 2 reuses, the water network proposed by Simulis Pinch Water recovers  $\approx$  41% of average MWR (**M**aximum of **W**ater **R**ecovery). For a multi contaminant analysis, the average MWR is the average of the MWR of each contaminant.

This water recovery is not relevant for a multi contaminant analysis. It is better to compare the actual water consumption of the process (157 t/h) with those obtained by the new water network (120 t/h). A water saving of 37 t/h is reached for this process (23.5% of actual process consumption).

The 2 reuses are described in a table showing their characteristics:

#### RESULTS FOR THE AUTOMATIC DESIGN OF THE WATER NETWORK

| ſ |       |       |                  |                  |                  |          |       | INPUT DATA       |                  |                  |          |  |  |
|---|-------|-------|------------------|------------------|------------------|----------|-------|------------------|------------------|------------------|----------|--|--|
|   | Reuse | Sink  |                  |                  |                  | Source 1 |       |                  |                  |                  |          |  |  |
|   | Item  | Name  | Contaminant      | Contaminant      | Contaminant      | Target F | Namo  | Contaminant      | Contaminant      | Contaminant      | Target F |  |  |
| L |       | Name  | measurement (C1) | measurement (C2) | measurement (C3) | (t/h)    | Name  | measurement (C1) | measurement (C2) | measurement (C3) | (t/h)    |  |  |
|   | 1     | SK-O2 | 2,00E+01         | 3,00E+02         | 4,50E+01         | 34,0     | SR-O1 | 1,50E+01         | 4,00E+02         | 3,50E+01         | 50,0     |  |  |
| [ | 2     | SK-O5 | 5,00E+01         | 4,00E+02         | 6,00E+01         | 8,0      | SR-O4 | 2,00E+01         | 6,00E+01         | 2,00E+01         | 8,0      |  |  |
| [ | 3     | SK-O3 | 1,20E+02         | 2,00E+01         | 2,00E+02         | 56,9     | SR-O1 | 1,50E+01         | 4,00E+02         | 3,50E+01         | 24,5     |  |  |

|                        | INFORMATION ON WATER REUSE |                     |                      |                           |                          |            |                 |          |                |
|------------------------|----------------------------|---------------------|----------------------|---------------------------|--------------------------|------------|-----------------|----------|----------------|
| Source 1               | Source 2                   | Total mass flowrate | Fresh water<br>(t/h) | % of water<br>reuse / MWR | Degree<br>of<br>coupling | Efficiency | Splitting ratio |          | Mass Elourato* |
| Mass flowrate<br>(t/h) | Mass flowrate<br>(t/h)     | (t/h)               |                      |                           |                          |            | Source 1        | Source 2 | efficiency     |
| 25,5                   | 0,0                        | 34,0                | 8,5                  | 28,9                      | 1                        | 1,00       | 0,5             | 0,0      | 25,5           |
| 8,0                    | 0,0                        | 8,0                 | 0,0                  | 14,7                      | 1                        | 1,00       | 1,0             | 0,0      | 8,0            |
| 2,8                    | 0,0                        | 56,9                | 54,1                 | 6,1                       | 1                        | 0,06       | 0,1             | 0,0      | 0,2            |

The water network is displayed in the « Water network » sheet:



16

The graphic options of Simulis Pinch Water can be handled to draw the diagram for each reuse:

|                                                                                                                | Water network design: Graph settings        |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                                                                | Display water network with Microsoft Excel® |
| Water network analysis                                                                                         |                                             |
| Reuse characterization                                                                                         | Color for the network                       |
| Minimum mass flowrate for reuse (t/h) 0                                                                        |                                             |
| Minimum percentage of water reuse / MWR (%) 0                                                                  | Flux display option Proportional            |
| Maximum coupling degree 🚱 2                                                                                    |                                             |
| Allow stream division 🕐 🗌 Sinks selection order 📀                                                              | Additional graphical results                |
| Sources selection order 🔞                                                                                      | ✓ Draw the reuses                           |
| ✓ Water network design                                                                                         | Draw connections between the streams        |
| Selection method: © Automatic © Semi-Automatic © Manual<br>Criteria for automatic reuse selection              | Show stream names                           |
| First criterion Maximum (Flowrate*Efficiency)                                                                  | Display the reuse item numbers              |
| Second criterion Coupling degree                                                                               |                                             |
| Third criterion Minimum distance                                                                               | Add background picture                      |
| Procedure stop criteria                                                                                        | No picture selected                         |
| Minimum threshold of flowrate / initial MWR (%) 100                                                            |                                             |
| Maximum number of reuses 10                                                                                    | Dimensions selection                        |
| Graphic options                                                                                                |                                             |
| Optional constraints         Help         Default parameters         < Return         Calculate         Cancel | Help Validate Cancel                        |









ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

**2**: +33 (0) 5 62 88 24 30

#### www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

**\***: +1 215 600 3759