Démarrer avec Simulis® Pinch module "Water"

Cas 3 : Intégration d'une raffinerie de pétrole Analyse multi-contaminants

Release Simulis Pinch 2.0.0

Software & Services In Process Simulation

We guide You to efficiency

© 2021 ProSim S.A. All rights reserved.

Introduction

Ce guide de démarrage vous présente la prise en main de Simulis Pinch Water pour effectuer une analyse multi-contaminants d'un procédé.

Ce guide est organisé comme suit :

- Étape 1 : Génération des données dans Microsoft™ Excel
- Étape 2 : Définition de l'optimum théorique des consommations d'eau du procédé
- Étape 3 : Conception du réseau d'eau

Ce document fait suite au guide « Cas 1 : Intégration d'un procédé de production d'acrylonitrile – Principes de base de Simulis Pinch Water » fondé sur une analyse mono-contaminant.

Étape 1 : génération des données dans Microsoft™ Excel

Ce document présente l'étude du réseau d'eau d'une raffinerie de pétrole. Cet exemple est étudié dans : *Gunaratnam M., « Automated Design of Total Water Systems », Ind. Eng. Chem. Res., 2005, 44, 588-599.*

Les 3 contaminants limitant les réutilisations sont les suivants :

- Les matières en suspension : la notion de matière en suspension (ou MES) (ou particules en suspension) désigne l'ensemble des matières solides insolubles visibles à l'œil nu présentes en suspension dans un liquide. Plus une eau en contient, plus elle est dite turbide.

La matière en suspension est une « matrice » capable d'adsorber divers polluants, qui peuvent s'y transformer et être transportés. Ainsi, les MES sont les polluants les plus courants des procédés industriels.

- Le sulfure d'hydrogène (H_2S) : le souffre présent dans le H_2S est un polluant pour les catalyseurs et provoque des pluies acides suite à sa combustion. Il faut par conséquent limiter ses rejets le plus possible. Pour ces raisons, des procédés d'« hydrodésulfuration » sont utilisés au sein des raffineries de pétrole, et des procédés « Claus » sont mis en place pour traiter le H_2S et le valoriser en soufre.

- Les hydrocarbures : ce sont des polluants notamment pour les colonnes de stripping à la vapeur et pour les sections d'hydrodésulfuration car ils dégradent les performances de ces équipements. Il faut donc limiter les réutilisations avec de fortes concentrations en hydrocarbures.

Étape 1 : génération des données dans Microsoft™ Excel

Les données utilisées sont les suivantes :

Operation	Flowrate (t/h)	Contaminant	C_{in} (ppm)	C _{out} (ppm)
Steam stripping	50	H.C. H ₂ S S.S.	0 0 0	15 400 35
Hydro-desulphurization I	34	H.C. H ₂ S S.S.	20 300 45	120 12500 180
Desalter	56	H.C. H ₂ S S.S.	120 20 200	220 45 9500
Ejector steam for vacuum column	8	H.C. H ₂ S S.S.	0 0 0	20 60 20
Hydro-sulphurization II	8	H.C. H ₂ S S.S.	50 400 60	150 8000 120

*H.C. : Hydrocarbon

*S.S. : Suspended solids (matière en suspension)

- 1. Lancez Simulis Pinch Water
- Sélectionnez les colonnes contenant les débits des courants (F) et les concentrations (C) des différents contaminants (uniquement les valeurs numériques, et non les titres de colonnes, comme présenté dans les copies d'écran ci après)

19	• (a • A	1Ŧ									
chier	Accueil	Insertion	Mise en page	Formules	Données	Révision	Affichage	Développe	eur Compl	éments	
Envoyer	à Bluetooth	Simul	is Numerics								
Simulis	*	💧 Simul	is Pinch Water		-	-					
ommande	es de menu	Inserer	Barres d	icer * Renomi	mer * Supprim	ier * Edition *					
0	22	Simulis	in ch : Calcul d'intér	ration énergé	tique						
A		B	C	Jucion energe	D	E		F	G	Н	
Calo	cul de ré	utilisatio	n d'eau							23	
	Time										
	Гуре	d analyse	-					-	-		
	C Mo	no conta	minant								
	⊙ Mu	lti contar	nants				-		Г		Noms des courants
									Ţ		SK-O1
	Type	de donné	es —						H A		SK-O2
	C Do	nnées ag	r <mark>égées (indica</mark>	ateur agré	gé)		. т				SK-O3
	(Do	onées br	tec (débite m		at macura			• •			SK-O4
	00	linees bi	cies (debits in	iassiques (et mesures	»/					SK-05
			<u>+</u>	. Cálo a							SR-01
	Sélect	ion des d	lonnées Pinch	Select	ion valide						SR-O2
		14.0									SR-O3
	Unite d	es debits	massiques		t/h						SR-O4
	Marshar				0 Va	our valida					SR-O5
	Nombre	e de cont	aminants		3 Va	eur vallue					
	Anal	yse du ré	seau d'eau								
Q	Options .		Aide	A pro	pos		Calcule	r	Annuler		

	Données d'entrée								
Noms des courants	Débit massique (F)	Mesure (C)	Mesure (C)	Mesure (C)					
Noms des courants	Debit massique (1)	contaminant 1	contaminant 2	contaminant 3					
SK-O1	50,0	0,00E+00	0,00E+00	0,00E+00					
SK-O2	34,0	2,00E+01	3,00E+02	4,50E+01					
SK-O3	56,9	1,20E+02	2,00E+01	2,00E+02					
SK-O4	8,0	0,00E+00	0,00E+00	0,00E+00					
SK-05	8,0	5,00E+01	4,00E+02	6,00E+01					
SR-01	- 50,0	1,50E+01	4,00E+02	3,50E+01					
SR-O2	- 34,0	1,20E+02	1,25E+04	1,80E+02					
SR-O3	- 56,9	2,20E+02	4,50E+01	9,50E+03					
SR-O4	- 8,0	2,00E+01	6,00E+01	2,00E+01					
SR-05	- 8,0	1,50E+02	8,00E+03	1,20E+02					

Données brutes

 Définir le type d'analyse et le type de données (analyse multi-contaminants à partir de données brutes pour cet exemple)

Lors d'une analyse multi-contaminants (à partir de données brutes), les résultats de diagnostic sont fournis pour chaque contaminant pris indépendamment des autres.

De ce fait, pour chaque contaminant, plusieurs feuilles sont générées :

- 1. La grande courbe composée
- 2. Les courbes composées sources et puits
- 3. Les courants traités (courants sources et courants puits)
- 4. Les résultats de l'analyse pincement (données et résumé des résultats)

Courants C2	Résultats Pinch Eau C2	Courbes composées (C=f(dM)) C1	Grande courbe composée C1	Courbes composées (M=f(F)) C1	Courants C1	Résultats Pinch Eau C1

Il est possible d'agréger ces contaminants en un seul indicateur unique (selon un calcul d'agrégation défini par l'utilisateur). Dans ce cas, l'utilisateur choisit l'option « Données agrégées (indicateur agrégé) » pour la définition du type de données.

Cette méthode permet de tracer un seul jeu de données (1 seule courbe grande composée, 1 seul diagnostic pour l'analyse pincement eau...) et ainsi de simplifier l'analyse pincement eau.

Ce calcul d'agrégation peut également être réalisé dans ProSimPlus à l'aide du module « Analyse Pincement Eau » en effectuant une analyse multi-contaminants.

— Ту	pe d'analyse
0	Mono contaminant
\odot	Multi contaminants
Ту	pe de données
0	Données agrégées (indicateur agrégé)
•	Données brutes (débits massigues et mesures)

En analysant les courbes composées, il est possible d'observer que pour les 3 contaminants, un MWR existe (zone verte). Le minimum des MWR est associé au contaminant C2 (autrement dit, le H_2S pour cet exemple) avec 67 t/h.

Si l'utilisateur dispose d'une licence pour l'utilisation de Simulis Pinch, l'outil lui permet de générer un réseau d'eau dont le but est de réutiliser un maximum d'eau interne au procédé

Calcul de réutilisation d'eau
Type d'analyse
C Mono contaminant
Multi contaminants
Type de données
C Données agrégées (indicateur agrégé)
O Données brutes (débits massiques et mesures)
Sélection des données Pinch Sélection valide Unité des débits massiques t/h Nombre de contaminants 3 Valeur valide Image: Contaminants 3 Valeur valide
Options Aide A propos Suivant > Annuler

1. Définir le type d'analyse et le type de données (analyse multi-contaminants à partir de données brutes pour cet exemple)

3. Cochez l'option *Analyse du réseau d'eau*

4. Cliquez sur Suivant

1. Cochez l'option **Synthèse** du réseau d'eau

Dans un premier temps, les critères par défaut seront conservés (**Sélection automatique des réutilisations**)

aly	se du réseau d'eau	8						
- c	aractérisation d'une réutilisation							
I	Débit massique minimal de réutilisation (kg/h)	0						
I	Pourcentage minimum réutilisé / MWR (%)	0						
I	Degré de couplage maximum 🕜	2						
	Autoriser la division de courant	Ordre de sélection des puits						
		Ordre de sélection des sources						
•	Synthèse du réseau d'eau							
1	Méthode de sélection : ③ Automatique	emi-Automatique C Manuelle						
	Critères pour la sélection automatique des réutilisations							
	Premier critère (Débit*efficacité) maximale							
	Deuxième critère Degré de couplage	•						

Troisième critère • Distance minimale Critères d'arrêt de la procédure Seuil minimum de débit réutilisé / MWR initial (%) 100 Nombre maximum de réutilisations 10 Options graphiques ... Paramètres par défaut Contraintes optionnelles ... Aide < Retour Calculer Annuler 2. Cliquez sur Calculer

Un message indiquera la fin des calculs (lorsqu'un critère d'arrêt est atteint)

Pour cet exemple, Simulis Pinch Water ne peut plus proposer de réutilisation supplémentaire et la construction du réseau d'eau s'arrête car aucune réutilisation supplémentaire ne peut plus être déterminée

Trois feuilles supplémentaires ont été générées :

- 1. Données d'entrée
- 2. Résultats Réseau d'eau
- 3. Réseau d'eau

BILAN SUR LE RÉSEAU D'EAU

Nombre pitial de réutilisations possibles :	18
Pourcentage cumulé de la quantité d'eau réutilisée :	41,13
Nombre de réactilisations :	3
Débit massique total d'eau réutilisée (t/h) :	36,3
Quantité d'eau encore réutilisable (t/h) :	0,0
Quantité d'eau propresencore nécessaire (t/h) :	120,6
Quantité d'eau rejetée restante (t/h) :	120,6
Nombre de courants sources restants :	4
Nombre de courants puits restants :	2

RÉSULTATS DE LA SYNTHÈSE AUTOMATIQUE DU RÉSEAU D'EAU

Numéro								DONNÉES D'EN
de			Courant nuits					Courant
la			courant parts					courant
réutilisatio	Nom	Mesure contaminant	Mesure contaminant	Mesure contaminant	F objectif	Nom	Mesure contaminant	Mesure cont
n	NOM	(C1)	(C2)	(C3)	(t/h)	NOM	(C1)	(C2)
1	SK-O2	2,00E+01	3,00E+02	4,50E+01	34,0	SR-O1	1,50E+01	4,00E+
2	SK-O5	5,00E+01	4,00E+02	6,00E+01	8,0	SR-O4	2,00E+01	6,00E+
3	SK-O3	1,20E+02	2,00E+01	2,00E+02	56,9	SR-O1	1,50E+01	4,00E+

PLUS AUCUNE RÉUTILISATION POSSIBLE

LISTE DES COURANTS RESTANTS APRÈS LA SYNTHÈSE DU RÉSEAU D'EAU

Noms des	Débit massique (F)	Mesure contaminant	Mesure contaminant	Mesure contaminan
courants	(t/h)	(C1)	(C2)	(C3)
SR-O2	34,0	1,20E+02	1,25E+04	1,80E+02
SR-O5	8,0	1,50E+02	8,00E+03	1,20E+02
SR-O3	56,9	2,20E+02	4,50E+01	9,50E+03
SR-O1	21,7	1,50E+01	4,00E+02	3,505+01
SK-O1	50,0	0,00E+00	0,00E+00	0,00E+00
SK-O4	8,0	0,00E+00	0,00E+00	0,00E+00

CARACTÉRISTIQUES DE L'EAU PROPRE

Tableaux optionnels

La première partie de la feuille « Résultats Réseau d'eau » récapitule les informations globales sur l'intégration du procédé et sur le réseau d'eau

BILAN SUR LE RÉSEAU D'EAU

Nombre initial de réutilisations possibles :	18
Pourcentage cumulé de la quantité d'eau réutilisée :	41,13
Nombre de réutilisations :	3
Débit massique total d'eau réutilisée (t/h) :	36,3
Quantité d'eau encore réutilisable (t/h) :	0,0
Quantité d'eau propre encore nécessaire (t/h) :	120,6
Quantité d'eau rejetée restante (t/h) :	120,6
Nombre de courants sources restants :	4
Nombre de courants puits restants :	2

Dans le cas étudié, avec 3 réutilisations, le réseau d'eau proposé par Simulis Pinch Water permet de récupérer ≈ 41% du MWR moyen (**M**aximum **W**ater **R**euse ou Maximum d'eau réutilisable). Ici le MWR moyen est la moyenne des MWR obtenus pour les différents contaminants.

Ce pourcentage de réutilisation n'est pas très pertinent pour une analyse multi-contaminants. Il est plus judicieux de comparer les consommations d'eau actuelle du procédé (157 t/h) avec celles obtenues par le nouveau réseau d'eau (120 t/h). Une économie de 37 t/h d'eau pour ce procédé (soit 23.5 % de la consommation actuelle du procédé).

Les 3 réutilisations sont décrites dans un tableau présentant les caractéristiques des réutilisations :

RÉSULTATS DE LA SYNTHÈSE AUTOMATIQUE DU RÉSEAU D'EAU

	Numéro							DONNÉES D'ENTRÉE				
	de la	Courant puits					Courant source 1					
ré	éutilisatio	Nam	Mesure contaminant	Mesure contaminant	Mesure contaminant	F objectif	Nom	Mesure contaminant	Mesure contaminant	Mesure contaminant	F objectif	
	n	NOM	(C1)	(C2)	(C3)	(t/h)	NOM	(C1)	(C2)	(C3)	(t/h)	
	1	SK-O2	2,00E+01	3,00E+02	4,50E+01	34,0	SR-O1	1,50E+01	4,00E+02	3,50E+01	50,0	
	2	SK-O5	5,00E+01	4,00E+02	6,00E+01	8,0	SR-O4	2,00E+01	6,00E+01	2,00E+01	8,0	
	3	SK-O3	1,20E+02	2,00E+01	2,00E+02	56,9	SR-O1	1,50E+01	4,00E+02	3,50E+01	24,5	

CARACTÉRISTIQUES DES RÉUTILISATIONS				INFORMATIONS SUR LA RÉUTILISATION D'EAU					
Courant source 1	Courant source 2	Débit massique	Eau propre	% du débit d'eau	Degré de	Degré de Efficacité		Taux de division	
Débit massique (t/h)	Débit massique (t/h)	(t/h)	(t/h)	réutilisée / MW R	couplage	emacite	Source 1	Source 2	efficacité
25,5	0,0	34,0	8,5	28,9	1	1,00	0,5	0,0	25,5
8,0	0,0	8,0	0,0	14,7	1	1,00	1,0	0,0	8,0
2,8	0,0	56,9	54,1	6,1	1	0,06	0,1	0,0	0,2

Le réseau d'eau peut être visualisé dans la feuille « Réseau d'eau » :

Les options graphiques de Simulis Pinch Water permettent de tracer les diagrammes de chaque réutilisation :

	Synthèse du réseau d'eau : Options graphiques
	✓ Affichage du réseau d'eau dans Microsoft Excel®
Analyse du réseau d'eau	
Caractérisation d'une réutilisation	Couleur des flux Standard
Débit massique minimal de réutilisation (kg/s) 0	
Pourcentage minimum réutilisé / MWR (%) 0	Proportionnel
Degré de couplage maximum 🚱 🛛 2	
Autoriser la division de courant 🕐 🗌 Ordre de sélection des puits 🚱	✓ Autres résultats graphiques
Respecter la charge Ordre de sélection des sources	Tracer les réutilisations
✓ Synthèse du réseau d'eau	Tracer les connexions entre les courants
Méthode de sélection : C Automatique C Semi-Automatique C Manuelle Critères pour la sélection automatique des réutilisations	Afficher les noms des courants
Premier critère (Débit*efficacité) maximale	Afficher les numéros des réutilisations
Deuxième critère Degré de couplage 🗸	
Troisième critère Distance minimale 💌	Ajouter une image en fond
Critères d'arrêt de la procédure	Aucune image sélectionnée
Seuil minimum de débit réutilisé / MWR initial (%) 100	
✓ Nombre maximum de réutilisations 10	Sélection des dimensions
Options graphiques	
Contraintes optionnelles Aide Paramètres par défaut < Retour	Aide Valider Annuler

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

2: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

***:** +1 215 600 3759