Getting started with BatchReactor®

Use Case 3: Simulation of mass transfer resistance

Software & Services In Process Simulation

We guide You to efficiency

© 2021 ProSim S.A. All rights reserved.

Introduction

When simulating a vapor-liquid reactor with BatchReactor[®], the gas and the liquid phases are considered, by default, at the thermodynamic equilibrium. This assumption is correct as long as the mass transfer rate is fast enough. However, in some applications (heterogeneous reactions, bioreactors...), it is necessary to refine the model by taking into account the mass transfer resistance. It is then possible to analyse the influence of the equipment (mixing device, vessel geometry...) and the operating conditions (gas flowrate, rotation speed...) on the mass transfer kinetics.

This document describes the use of the mass transfer model in BatchReactor[®].

Here are the steps to follow:

- Step 1: selection of the compounds
- Step 2: configuration of the reactor topology and the mass transfer model
- Step 3: description of the operating mode
- Step 4: simulation of multiple different configurations

Description of the model

This tutorial is based on an example of a reactor that is fed with pure oxygen which creates a dispersed gas phase inside the liquid phase. The goal is to use the mass transfer model in order to analyse the influence of mass transfer kinetic on the composition of each phases.

The oxygen mass transfer flow corresponds to the molar flowrate of oxygen that is absorbed (or stripped) in the liquid phase.

Description of the model

The mass transfer model is based on the two-film theory. According to this theory, on either side of the gas-liquid interface, there is a film in which mass transfer is governed by diffusion. Assuming that the mass transfer resistance is mostly localized on the liquid side, the gas phase is considered at the thermodynamic equilibrium with the liquid film, and the mass transfer flow is calculated from the knowledge of mass transfer coefficients ($k_L a$) in the liquid phase.

Description of the model

The transfer flow for each compound is obtained from the following relation:

 $\Phi = k_L a \left(C_{Li} - C_L \right)$

With:

 $k_L a$ Volumetric mass transfer coefficient in the liquid phase (h⁻¹)

The following configurations will be simulated:

- Configuration 1: with no transfer resistance
- Configuration 2: with transfer resistance and $k_L a$ predicted by the software
- Configuration 3: with transfer resistance and $k_L a$ regressed from experimental data

1 - Click on the "Edit the thermodynamics and compounds" icon to access the "Calculators editor" window

1 - Import the following compounds: water, oxygen, nitrogen

"Getting started with Simulis Thermodynamics - Use case 1"

1 - The Henry's law is used to compute the solubility of oxygen and nitrogen in water. It requires to modify the field « *Liquid vapor calculation type* » in the « *Phase change* » category

Compound Editor					—		×	
COMPOUNDS		This window helps you visualize the compounds propertie	s.					
About properties		Complete						
About properties		Properties	WATER	OXYGEN	NITROGEN			
VIEW		🕀 💭 Identification						
Create a view		Group contribution models						
		. ⊕ Atomic						
Delete this view	_	Phase change						
🛐 Modify this view		Normal melting point	0°C	-218.789 °C	-210.001 °C			
		Normal boiling point	100 °C	-182.962 °C	-195.806 °C			2 - For oxygen and
MODIFICATIONS		Enthalpy of fusion (melting point)	1434.4502868068	. 106.11854684512	. 1/2.08413001912			, e
🔊 Undo		Triple point temperature	0.0100000000000	-218.789 °C	-210.001 °C			nitrogen, select
🙉 Redo		Iriple point pressure President at a 25%	0.0060373056994	. 0.0014803849000	. 0.123562/929928			
		Physical state at 25°C	Liquia	Supercritical	Supercritical			« Henry constant »
UNIT SYSTEMS	— ^	Physical state in aqueous solution at 25°C	<unknown></unknown>	<unknown></unknown>	<unknown></unknown>			1
🗊 For the properties		Enthaley of vanorization (bailing point)						
		Critical Water partition (polling point)		dunka ouros	dun kan asuma s			
		soil contion coefficient (Koc@2000	Culikilowilz	<unknown></unknown>	<ur>Current own</ur>			
			<up>known></up>	Henry constant	Henry constant	—		
			0 344861	0.0221798	0.0377215	•		
		Modified aceptric factor	0.7023	0.0221730	0.0377215			
		Critical temperature	373.946 °C	-118.57 °C	-146.95 °C			
			217.75474956822	49.770540340488.	33,555391068344			
		Critical volume	55.9472 cm3/mol	73.4 cm3/mol	89.21 cm3/mol			
		Critical compressibility factor	0.229	0.288	0.289			
		Critical density	0.0178739954814	0.0136239782016	. 0.0112095056608			
		Heat of sublimation at the triple point	12141.491395793					2 - Click on "OK"
		Glass-transition temperature						5 - CIICK UIT « UK »
		E Condensed phase						
		🕀 🖾 Phase thermochemistry					-	
		CAS Registry Numbers are the intellectual property of the American Chemical	I Society; and are used by Pro	Sim SA with the express				
		permission of ACS, CAS Registry Numbers 9 have not been Vernied by ACS and	i may be inaccurate.		Ok	Can	cel	

1 - In the « Model » tab, select the « Multisolvents Henry's law » thermodynamic profile

2 - Click here to access the parameters of the Henry's law

1 - Click on « Import binaries »

So Import binaries...

2 - Click on « Search »

1 - The parameters of Henry's law are displayed here (binaries view: grid)

•		_/					
Binaries editor	_				-		×
	Binaries view: 🧕	Grid OM	atrix				
DINIADIES	This window help	s you to enter the bi	naries to take i	nto account di	uring thermod	vnamic calcula	ations
DINARIES						,	
ACTIONS —	These parameters	are used instead of	those defined i	n the "Binaries	page of the	calculator.	
🙃 Import binaries	Formulation : Dep	ends of used correla	tion (see comp	ound's Henry's	s Law) (atm)		
😈 🛛 Clear all binaries	Compound	Compound	IdCorrelation	TMin (K)	TMax (K)	А	В
📓 Estimate binaries	WATER	OXYGEN	101	273	617	139.485	-68
The save the binaries	WATER	NITROGEN	101	350	600	141.2677	-69
	OXYGEN	NITROGEN	0	0	0	0	0
MODIFICATIONS — 🗛	•						
🔊 Undo							
🐴 Redo							
Unit							
▼							
parameters will be ignored							
	•						►
	Not supplied	Supplied	Imported	Estimated			
	Comments :						
			r	Clickon	" OK »		
			Ζ-				
					Ok	Cano	el

The configuration of the « *Thermodynamic calculator* » is now over. Click on « *OK* » to get back to the main interface.

ltermodynamic calculator editor	_				– 🗆 X
CALCULATOR	This window helps you to define the	context of your thermodynamic calcu	ilator		
	COMPOUNDS MODEL BI	NARIES			
🕥 Open		1			
🚌 Save as	Name	Multisolvents Henry's law			
	Category	All the profiles	•		
Show the package manager	Profile	Multisolvents Henry's law	•		Parameters
Import a package				_	Thermodynamic assistant
	Approach type	From activity coefficients	•		Thermodynamic help
Select a CAPE-OPEN package	Equation of state	PR Generalized	•	۲	Use a specific model for pure water
SERVICES — A	Alpha function	Peng-Robinson (76)	•	۲	Advanced
Calculate	Mixing rules	Standard	•	٢	Water-hydrocarbons model
Export as a PSF file	Activity coefficient model	NRTL ProSim	-	٢	Sol A 6.25043
Magrams	Pure liquid fugacity standard state	Multisolvents Henry's law - MR1	•	٢	Sol B 4015.3
	Liquid molar volume	Ideal mixture	•	۲	
	Transport properties	Classic methods	- B	۲	The liquid phase splitting is taken into account
Sigma profiles	Enthalpy calculation	H*=0, ideal gas, 25°C, 1 atm	•	۲	Predictive model parameters
	User-defined thermodynamic model	None	•	۲	True coeciec model
		Model index 1			Beactive model parameters
🔊 Undo	Comments :			_	Reactive model parameters
🙉 Redo					Polymers model parameters
Name					
[New calculator]					
Comments					
					Ok Cancel
Calculator type					

For more information about compounds selection, please refer to "Getting started with Simulis Thermodynamics - Use case 1"

Back to the main interface, specify the reactor topology in the "Flowsheet" tab

- 1 Check the following options from the control panel:
- Calculation mode: diphasic
- Diphasic reactor type: closed
- With mass transfer model
- The vessel bottom geometry is "Torispherical"
- The mixing device is a "4 pitched flat-blades paddle"

Once the mass transfer model is configured, checking/unchecking the "With mass transfer model" option enables to switch between the mass transfer model and the equilibrium model (which is the default option)

Back to the main interface, specify the reactor topology in the "Flowsheet" tab

Specify the following parameters in the reactor configuration window:

Specify the following parameters in the reactor configuration window:

3 - The initial load:

4/8 L of water	Initial load
🧶 Initial load	- 🗆 X
Initial load specification	
Fractions \sim	Molar \sim
= 💽 📋 - 🗊	
Compound	Fraction
WATER	1
OXYGEN	0
NITROGEN	0
	1.00000
Total volume load \sim	478 L
Restore	<u>O</u> K <u>C</u> ancel

Head space type	N2 0.79	%		
Air	N2 0.70	= [3
	02 0.21	%		
() Nitrogen	Adjustment variable			
Other	OPressure			
		-	Pressurizing" cor	npound
○ None	Temperature		WATER	

© 2021 ProSim S.A. All rights reserved.

Specify the following parameters in the reactor configuration window:

Specify the following parameters in the reactor configuration window:

5 - The geometric characteristics of the equipment:

Vessel bottom geometr	Vessel bottom geometry	🌯 M	ixing device	Mixing device
🖲 Vessel bottom geometry		× 🚺 Mixing device		×
Vessel bottom geometry is known		With a mixing dev	ice Dissipated heat inclu	ded
Image Type of ves	sel bottom geometry	Image	Parameters	
Torispher	ical 🗸		4 pitched flat-blades	paddle 🗸 🗸
			Agitator diameter	0.5 m 👻
Parameters			Agitator height	0.015 m 💌
→ Number of	baffles 0		Ribbon-vessel distan	o m
Vessel dia	meter (D) 1.165 m	•	Ribbon width	0 m
Vessel bot	tom height (H)		Power number	1.3
Curve radi	1.2 m		Energy constant in la	minar flow 55
Curve radi	us #2 (R2) 0.12 m		Propeller step / Agita	tor diameter
			Blade height / Tank d	iameter 0.0666666666666667
R2			Device number	1
			Distance between 2	devices 0 m
RI			"User" coefficients	immersed) "User" coefficients (wall)
			Default rotation spee	d 90 tr/min 💌
Restore Technology	<u>O</u> K <u>C</u> ance	Restore Te	chnology	<u>O</u> K <u>C</u> ancel

Back to the main interface, specify the operating mode in the "Scenario" tab

Back to the main interface, specify the operating mode in the "Scenario" tab

- 2 Specify the operating parameters of the 1st step
- Step name: N₂ inerting
- Feed:
 - Pure nitrogen
 - T = 22 °C
 - < P = 1 atm
 - Flowrate = 354 l/h

🐣 Feed	_	
Name: Feed		
Parameters Notes 🥑 Validation		
Feed is open		
Temperature specification		
Given temperature	✓ 22 °C	•
Pressure specification	1 atm	
Given pressure	∨ Taum	•
Init flowrate energification		
TIOW Tate Specification TIOW ra	te variation	
Fractions	✓ Molar	~
= ₩Σ		
Compound	Fraction	
WATER	0	
OXYGEN	0	
NITROGEN	1	
	1.00000	
Total volume flowrate	→ 354 Vh	
Thermodynamic calculator Def	ault calculator	~
Restore	<u>о</u> к	Cancel

Back to the main interface, specify the operating mode in the "Scenario" tab

- 3 Specify the operating parameters of the 2nd step
- Step name: O₂ Feeding
- Feed:
 - Pure oxygen
 - T = 22 °C
 - < P = 1 atm
 - Flowrate = 354 l/h

🧶 Feed		_		×
Name: Feed				
Deservations in a local second				
Parameters Notes 🧭 Valida	ation			
Feed is open				
Temperature specification				
Given temperature	\sim	22 °C	-	
Pressure specification		d atm		
Given pressure	~	1 aum		
lait flowrate energification				
The nowrate specification 1	iowrate variat	ion		
Fractions	~	Molar		\sim
2× = 💽 📋 - 🗊				
Compound	Fra	ction		
WATER	0			
OXYGEN	1			
NITROGEN	0			
	1.0	0000		
Total volume flowrate	~	354 Vh	•	•]
Thermodynamic calculator	Default calc	ulator		~
Restore	[<u>о</u> к	<u>C</u> ar	icel

Back to the main interface, specify the operating mode in the "Scenario" tab

4 - Specify the end events of the steps

For <u>each</u> step, the end event corresponds to a time of 1h spent since the beginning of the step

Event		×
Information		_
Name:	Event	
Parameters	Notes 🧭 Validation	
Event type	e	
O Time s	pent since beginning of simulation	
Time s	pent since beginning of step	
○ Tempe	rature inside the reactor	
○ Fraction	on inside the reactor	
Conce	ntration inside the reactor	
O Load o	of a component	
○ Total lo	ad	
O Pressu	ure inside the reactor	
Parameter	r(s) of the event	-
Time of	step	
1 h	•	
	OK Cancel	

Back to the main interface, specify a unit system that is consistent with the experimental data

5 - Modify the "Unit system for report"

- 🍨 Time: h
- Temperature: °C
- 🔹 Pressure: atm
- Mass concentration: mg/L
- ... Feel free to customize the unit systems!

6 - Modify the "Report parameters"

- Composition and flowrate printing: mass
- Time between each output: 60s
- Generation of the report (.docx)

	Mass
Flowrate printing	Mass
Fime between each output	60 s
Traced variables	
Fractions	
Concentrations	
Volume and flowrates	
Heat duty and temperature	
Scale-up calculation	
Scale-up calculation Type of the scale-up factor	Volume
Scale-up calculation Type of the scale-up factor Scale-up factor	Volume
Scale-up calculation Type of the scale-up factor Scale-up factor	Volume
☐ Scale-up calculation Type of the scale-up factor Scale-up factor ☑ Generation of the report (.docx	Volume 2

The three following configurations can now be simulated:

- Configuration 1: with no transfer resistance
- Configuration 2: with transfer resistance and the $k_L a$ predicted by the software
- Configuration 3: with transfer resistance and the $k_L a$ regressed from experimental data

Configuration 1: with no transfer resistance

1 - Click on the " <i>Mass transfer"</i> button in the	🧶 Mass transfer — 🗆 🗙
"Flowsheet" tab	Volumetric mass transfer coefficients
mass transfer	
	Compound Model Value
	WATER No resistance
	OXYGEN No resistance
	NITROGEN No resistance
2 - Select the " <i>No resistance</i> " option for all compounds	Vapor phase properties Vapor phase considered for the mass transfer O Head space O Dispersed gas
2 Coup the file and run the simulation	
3 - Save the me and run the simulation	Parameters
*	Calculation of gassed power consumption
	Correction factor Calculated V Bruijn et al. V
	Parameters
	Restore OK Cancel

Configuration 1: with no transfer resistance

4 - Once the simulation is over, open the Word[®] report and access the profiles corresponding to the mass concentrations in the liquid phase

5 - You can adjust the graph scales in order to properly display the concentration profiles of nitrogen and oxygen

Configuration 1: with no transfer resistance

6 - Finally, you can analyse the results:

Configuration 2: with transfer resistance and the $k_L a$ predicted by the software

1 - Click on the " <i>Mass transfer"</i> button in the	🧶 Mass transfer		- 🗆 ×		
"Flowsheet" tab	Volumetric mass transfer coefficients				
Mass transfer	D - D -				
	Compound	Model	Value		
	WATER	No resistance			
	OXYGEN	Calculated	Middleton		
	NITROGEN	No resistance			
2 - Select the " <i>Calculated</i> " option for the oxygen (and keep the <i>Middleton</i> correlation suggested		Correlat	ions parameters		
hy default)	Vapor phase properties				
by default)	Vapor phase considered	for the mass transfer—			
	 Head space Dispersed gas 				
	Volume % Calco	ulated V G	ao et al. 🗸 🗸		
3 - Save the file and run the simulation			Parameters		
	Calculation of gassed powe	r consumption			
	Correction factor Calco	lated \vee B	ruijn et al. 🛛 🗸 🗸		
			Parameters		
	Restore	<u>0</u>	K <u>C</u> ancel		

Configuration 2: with transfer resistance and the $k_L a$ predicted by the software

- 4 For these operating conditions, the predicted value for the $k_L a$ of oxygen equals 6.8 h⁻¹.
- 5 Analyse the impact of mass transfer resistance on the results...

Mass concentrations

Configuration 3: with transfer resistance and the $k_L a$ regressed from experimental data

The concentration profile of oxygen absorbed in the liquid phase was measured by [SAR02]:

Time (h)	C _L (O ₂) (mg/L)			
1.01	1.5			
1.04	9.6			
1.07	15.4			
1.11	22.6			
1.14	26.9			
1.18	30.3			
1.22	33.3			
1.25	35.2			
1.29	37			
1.34	38.7			
1.40	40.0			
1.45	40.6			
1.50	41.2			

\rightarrow A case study was conducted in order to identify the $k_L a$ of oxygen. A value of 7.6 h⁻¹ was obtained (compared to 6.8 h⁻¹ predicted by the model)

Configuration 3: with transfer resistance and the $k_L a$ regressed from experimental data

1 - Click on the " <i>Mass transfer"</i> button in the	\implies	🧶 Mass transfer	- 🗆	×	
"Flowsheet" tah		Volumetric mass transfer coefficients			
Mass transfer					
		Compound	Model	Value	
		WATER	No resistance		
		OXYGEN	Supplied	7.6 1/h	
		NITROGEN	No resistance		
 2 - Select the "Supplied" option for the oxygen and specify a k_La value of 7,6 h⁻¹ 3 - Save the file and run the simulation 		Vapor phase proper Vapor phase con Head space Dispersed gas Volume %	ties sidered for the mass transfer s Calculated v	Gao et al. Paramete	√ :rs
-		Calculation of gasse	d power consumption Calculated ~	Bruijn et al.	~
				Paramete	ers
		Restore		OK	Cancel

Configuration 3: with transfer resistance and the $k_L a$ regressed from experimental data

4 - Compare the theoretical results (orange curve) with the experimental data (blue dots)...

Mass concentrations

To go further...

Comparison of the profiles obtained during the oxygen absorption step, for the 3 configurations:

Mass concentrations

To go further...

- Analyse the other profiles
 - Composition profiles of the gas and the liquid film
 - Mass transfer coefficients
 - Transfer flows
 - Heat duties
 - ...
- Add oxidation reactions with oxygen and analyse the influence of mass transfer resistance on the reactions conversion yields
- Analyse the influence of the technology, the geometric parameters and the operating conditions on the mass transfer kinetics.

ProSim SA 51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

*****: +1 215 600 3759