Getting started with Simulis[®] Thermodynamics

Use Case 15: Parameter identification with MS Excel

Software & Services In Process Simulation

We guide You to efficiency

© 2021 ProSim S.A. All rights reserved.

Introduction

It is possible to regress binary interaction parameters of thermodynamic models from experimental data with dedicated Simulis[®] functions (functions with extension Kij). Example given:

- stCALFlashTPKij()
- stCALGammaLKij()

- ...

The use of these functions are directly linked to regression of parameters located in the "BINARIES" tab of the calculator:

Before studying this case, it is recommended to consult "Getting Started with Simulis Thermodynamic, Case 8" that explains how to regress binary interaction parameters from experimental data in Excel

Introduction

This document presents, with illustration examples, the possibility to regress other types of parameters:

- 1- Pure components properties
- 2- Specific binary interaction parameters (BIP)
- 3- Binary interaction parameters (BIP) for solid-liquid equilibria

The use of a complementary add-in "Simulis Parameters Identification.xla" (or SPI) is necessary

Introduction - SPI Add-In

- Installation of the complementary add-in "Simulis Parameters Identification.xla":
 - Save the add-in in the folder (to be created if necessary): C:\ProSim
 - In Excel Options
 - o Add-ins
 - o Go
 - o Brose
 - o Add the add-in

Proofing	Add-ins			Add-ins available:
Save	Name *	Location	Туре	Simulis Parameters Identification
Language	Active Application Add-ins			Simulis Thermodynamics
	Simulis Conversions	C:\ Files (x86)\Simulis\smConversions.dll	COM Add-in	Simulisnumerics
Ease of Access	Simulis Parameters Identification	C:\m\Simulis Parameters Identification.xla	Excel Add-in	Solver Add-in
Advanced	Simulis Pinch	C:\root\Office16\Library\Simulis Pinch.xla	Excel Add-in	
	Simulis Properties	C:\am Files (x86)\Simulis\SMProperties.dll	COM Add-in	
Customize Ribbon	Simulis Thermodynamics	C:\s (x86)\Simulis\SMThermodynamics.dll	Excel Add-in	
Out the Assess Tables	Simulis Thermodynamics	C:\s (x86)\Simulis\SMThermodynamics.dll	COM Add-in	
QUICK Access Toolbar	Simulisnumerics	C:\t\Office16\Library\SimulisNumerics.xla	Excel Add-in	
Add-ins	Solver Add-In	C. (Incero/Library/SOLVER/SOLVER/SOLVER/	EXCELAUG-III	
Trust Certer				
	Add-in: Solver Add-in			
	Publisher			Simulis Parameters Identification
	r sonarch	imation available		Sindiff Faranceers identification
	Compatibulity No compatibulity into	initiation available		
	Compatibility: No compatibility info	5) Microsoft Office) root) Office15) Library SOLVER	NIVER VI-	
	Compatibility: No compatibility info Location: C:\Program Files (x8t	5)\Microsoft Office\root\Office16\Library\SOLVER\SC	DLVER,XL May	
	Compatibility: No compatibility info Location: C:\Program Files (x84	5)\Microsoft Office\root\Office16\Library\SOLVER\SC	OLVER, XI AW	
	Compatibility: No compatibility infi Location: C:\Program Files (x84 Description: Tool for optimization	5)\Microsoft Office\root\Office16\Library\SOLVER\SO and equation solving	OLVER, XL A.W	

 \bigotimes

습 Home

🗁 Open

Save

Save As

Share Export Publish Close

Feedback Options

Introduction - Excel Solver

- if the Excel Solver is not found:
 - Search the path where is located:
 - o SOLVER32.DLL
 - Example given:
 - o C:\Program Files (x86)\Microsoft Office\OfficeXX\Library\SOLVER
 - o C:\Programmes\Microsoft Office\OfficeXX\Library\SOLVER
 - Or do a search on C:\
- Copy/Paste the DLL "SOLVER32.DLL" in the following folder (needs administrator rights):
 - C:\Windows\SysWOW64 (if 32 bits Excel version)
 - C:\Windows\System32 (if 64 bits Excel version or depending on Windows version)

Introduction - Examples

- Available examples with this document:
 - Regression of NRTL-SAC parameters (pure component properties)
 - o SIMULIS_GS15_EN-parameter-identification_caffeine-solubility.xlsm
 - Regression of specific BIP
 - o SIMULIS_GS15_EN-parameter-identification_water-acetone-viscosity.xlsm
 - Regression of BIP for solid-liquid equilibria
 - o SIMULIS_GS15_EN-parameter-identification_aspirin-acetone-solubility.xlsm

Pure component properties

- All constant properties of one or several components are accessible:
 - o stCALGetProperty(Name, Index, plD, Unit)

to <u>get</u> a property value of a component (function available in the Simulis Thermodynamics add-in)

o stCALSetProperty(Name, Index, pID, Value, Unit)

to <u>set</u> a property value of a component (function available in the complementary SPI add-in)

With:

Name : Name of the calculator
Index : Index of the component in the list
pID : Property identifier
Value : Value of the property to be set
Unit : Optional argument

Name: [New compound] ID: (CD780867-9C9E-4B89-960C-FADEBE3B01E6) Original ID: Original location: \\

About properties...

operties	Value
E Group contribution models	
+ 🦳 Atomic	
Phase change	
Normal melting point	
Normal boiling point	
Enthalpy of fusion (melting point)	
Triple point temperature	
Triple point pressure	
Physical state at 25°C	<unknown></unknown>
Physical state in aqueous solution at 25°C	<unknown></unknown>
Diffusion coefficient	
Enthalpy of vaporization (boiling point)	
Octanol-Water partition coefficient	<unknown></unknown>
soil sorption coefficient (Koc@20°C)	
Liquid vapor calculation type	<unknown></unknown>
- Acentric factor	<unknown></unknown>
Modified acentric factor	<unknown></unknown>
Critical temperature	
Critical pressure	
Critical volume	
Critical compressibility factor	<unknown></unknown>
Critical density	
Heat of sublimation at the triple point	
Glass-transition temperature	
🗉 🥘 Combustion, security, toxicity	
Condensed phase	
Phase thermochemistry	
Interaction, gas phase reaction	
User properties	
E PPC-SAFT	
NRTL-SAC	
Number of hydrophobic segments type (X)	<unknown></unknown>
Number of hydrophilic segments type (Z)	<unknown></unknown>
	<unknown></unknown>
Number of polar segments type (Y+)	<unknown></unknown>
E CPA	
🕂 🥘 Polymers-Segments	
🛨 🥘 Sanchez-Lacombe	
Temperature dependent properties	

- Pure component properties
 - Access to pID property identifier:
 - o "Simulis" menu, "Help", "Help on Simulis identifiers"
 - Simulis identifiers, "Compound properties" tab

imulis - 🛛 🛷 Simulis	Page Pinch Ene	rgy	Formulas	Data	Kevlew	view	Developer	Add-ins	неір	
lisert Diplicate Move Renime	▶ h Wa ▶ ate ~ ▶	ter Move ~ R Custom Too	Rename ~ D Dibars	elete ~ Edit ·	~					Simulis identifiers How to use: 1- Select or search for a quantity, a compound property. 2- Clic on copy (Ctrl C) and paste the identifier in your function (Excel, Matlab)
Delett: Edit Edit input unit system Edit out ut unit system	<pre></pre>	D	E	F	G	Н	1	J	К	Quantitier Compound properties Filter Search
Force calculations	•									Name Identifier Atomic
Help	, →	Help on Si Help on Si Help on Si	imulis Conve imulis identi imulis Prope	ersions fiers erties						1st ionization energy pidFirstionizationEnergy() 2nd ionization energy pidSecondIonizationEnergy() Atomic radius pidAtomicRadius() Born Constant pidBornConstant() Born radius pidBornRadius()
		Help on Si	imulis Therm	nodynamics						Charge pidCharge() Dielectric constant pidDielectricConstant() Diffusion volume pidVdiff() Dipole moment pidMu() Flory-Huggins degree of polymerization (P) pidFloryHugginsPolymerizationDegree()
										Flory-Huggins empirical parameter (eps) pidFloryHugginsEmpiricalParameter2() Flory-Huggins empirical parameter (s) pidFloryHugginsEmpiricalParameter1() Lennard-Jones energy pidLJPsi() Lennard-Jones length pidLJr() Modified Van der Waals area pidQiP() Molecular weight pidMw() Pauling Radius pidPaulingRadius()

Pure component properties

• Example: Regress NRTL-SAC parameters of caffeine to represent its solubility in several solvents

<u>Reference</u>: J. Zhong, N. Tang, B. Asadzadeh, W. Yan, "Measurement and Correlation of Solubility of Theobromine, Theophylline, and Caffeine in Water and Organic Solvents at Various Temperatures", J. Chem. Eng. Data, 62, 2570-2577 (2017)

Steps to build the Excel file

- 1- Define the calculator
- 2- Choice of units
- 3- Available experimental data
- 4- Thermodynamic calculations
- 5- Define the deviation minimization criterion between experimental data and the model
- 6- Working table of properties to be regressed
- 7- Define the calculation sequence
- 8- Use of the solver

- Step 1: Define the calculator
 - Import components CAFFEINE, WATER, METHANOL, ETHANOL, 1-PROPANOL, ETHYL ACETATE, ACETONE
 - Choose NRTL-SAC thermodynamic profile
 - Visualize available NRTL-SAC parameters for the components (with editor array)

- Step 2: Choice of units
 - Right-click on the calculator object
 - o Edit the input unit system
 - o Edit the output unit system
 - Choose "K" for temperature, "MPa" for pressure

- Visualize the units used in the Excel worksheet
 - Simulis function: stCALGetUnitNameInSystem()

85	o~ c ^a -	÷						
File	Home	Insert	Page Layout	Formulas	Data	Review	View	Developer
Paste	6 Cut ≧ Copy → ≸ Format Pa	ainter	Calibri B I <u>U</u> ~	* 11 *	А* А* А ~			ë₽ Wra
Cli	pboard	12		Font	5		Alig	gnment
STDEV	-	×	✓ f _x	=stCALGetUni	tNameIr	nSystem(\$A\$4; <mark>E\$1;</mark> \$I	D2)
	A	В	С	D		E	F	G
1	Simulis	Calculator			<u>ī</u>	1		2
2		Calc		Temperatu	re ;E\$	1;\$D2)	к	
3				Pressure	MP	а	MPa	
4 Calc								
5								

- Step 3: Available experimental data
 - Enter experimental solubilities available for each solvent (Zhong et al., 2017)
 - o Pressure

- o Temperatures
- Solubilities (molar fractions)

	А	В	С	D	E
4	Calc				
5					
6			1	CAFFEINE	
7			2	WATER	
8			3	METHANOL	
9			4	ETHANOL	
10			5	1-PROPANOL	
11			6	ETHYL ACETATE	
12			7	ACETONE	
13					
14			P (MPa)	0.1	
15					
16			Data		
17			Т (К)	x1	
18	Solubilit	y in Water	288.01	1.23E-03	
19			298.11	1.61E-03	
20			308.09	2.27E-03	
21			318.11	2.96E-03	
22			328.15	3.98E-03	
23					
24	Solubility	in Methanol	288.24	1.34E-03	
25			298.17	1.89E-03	
26			308.17	2.80E-03	
27			318.2	4.26E-03	
28			328.12	6.63E-03	
29					
30	Solubility	in Ethanol	288.01	7.80E-04	
31			298.11	1.32E-03	
32			308.09	2.04E-03	
33			318.11	3.22E-03	
34			328.15	4.69E-03	
35					
36	Solubility i	n 1-Propanol	288.24	1.17E-03	
37			298.17	1.77E-03	
38			308.17	2.82E-03	
39			318.2	4.53E-03	
40			328.12	7.16E-03	

- Step 4: Thermodynamic calculations
 - Vapor-liquid-solid equilibrium calculation at given temperature and pressure
 - Simulis function: stCALFslvTP()
 - Results as a vector (3*NC+3=24 cells, for 7 components):
 - Solid ratio
 - Liquid ratio
 - Vaporization ratio
 - Fractions (molar or mass) in solid phase
 - Fractions (molar or mass) in liquid phase
 - Fractions (molar or mass) in vapor phase

ST	DEV	• : × :	✓ f _x =	stCALFsIvTP(\$A\$	<mark>4;C18;</mark> \$D\$14;	F18:L18)										
	А	В	С	D	E	F	G	н	1	J	к	L	м	N	0	р
1	🔔 s	imulis Calculator			1	L 2										
2	\sim	Calc		Temperature	К	К										Colubility
3				Pressure	MPa	MPa										Solubility
4	Calc	1								1		1		4.E-03		
5								NRTL-SAC parameters	pid	CAFFEINE		CAFFEINE		0 3.E-03		
6			1	L CAFFEINE				х	148	-0.03317494		1		Fra		
7			2	2 WATER				Z	149	-0.14409829		1		E 2 E-03		
8			3	METHANOL				Y-	150	-0.01650241		1		E E E E E		
9			4	1 ETHANOL				Y+	151	0.37476255		1		eine		
10			5	5 1-PROPANOL										1.E-03		
11			6	5 ETHYL ACETATE										-		
12			5	7 ACETONE										0.E+00		05 000 0
13														20	5 290 2	95 300 3
14			P (MPa)	0.1	L]											len
15																
16			Data			Composition	(molar frac	tions)						Flash Calcula	tions	
17			Т (К)	x1		z1	z2	z3	z4	z5	z6	z7		S_Ratio	L_Ratio	V_Ratio
18	Solubi	lity in Water	288.01	1.23E-03	3	0.1	0.9	9				Ī		4;F18:L18)	0.90113725	0
19			298.11	L 1.61E-03	3	0.1	0.9	9						0.09845616	0.90154384	0
20			308.09	9 2.27E-03	3	0.1	0.9	9						0.09795246	0.90204754	0
21			318.11	L 2.96E-03	3	0.1	0.9	9						0.09732932	0.90267068	0
22			328.15	5 3.98E-03	3	0.1	0.9	9						0.09657085	0.90342915	0

- Step 5: define the minimization criterion between experimental data and the model
 - Deviation function between experimental solubility and calculated solubility:

%AARD =
$$\frac{100}{N_p} \sum_{i=1}^{N_p} \frac{|x_{1i}^{exp} - x_{1i}^{calc}|}{x_{1i}^{exp}}$$

With:

- % AARD : Average Absolute Relative Deviation
- N_p : Number of experimental points
- o x_{1i}^{exp} : Experimental solubility of caffeine (molar fraction)
- x_{1i}^{calc} : Calculated solubility of caffeine (molar fraction)

Step 6: Working table of properties to be regressed

- pID of NRTL-SAC parameters
 - o X : pidHydrophobicSegmentCount()
 - o Z : pidHydrophilicSegmentCount()
 - o Y⁻: pidPolarYMinusSegmentCount()
 - o Y⁺: pidPolarYPlusSegmentCount()
- Values of NRTL-SAC parameters
 - o Initial (e.g. 0.2; 0.2; 0.2; 0.6), then modified after regression
- Copy values of NRTL-SAC parameters in the component of the calculator
 - Use of <u>SPI Simulis</u> function: *stCALSetProperty()*
 - Result of this function is "1"

ST	DEV	* : X	$\checkmark f_x$	=stCALSetPropert	y(\$A\$4;L <mark>\$4</mark> ;	\$16 ;\$J6)									
1	А	В	0	C D	E	F	G	н	1	J	к	L	M		
1		Simulis Calculator				1 2									
2	\sim	Calc		Temperature	К	К									
3				Pressure	MPa	MPa									
4	Calc	Ī								1		1	1		
5								NRTL-SAC parameters	pid	CAFFEINE		CAFFEINE			
6				1 CAFFEINE				x	148	-0.03317494		4;\$16;\$J6)			
7				2 WATER				Z	149	-0.14409829		1			
8				3 METHANOL				Y-	150	-0.01650241		1	L		
9				4 ETHANOL				Y+	151	0.37476255		1	L		
10				5 1-PROPANOL											
11				6 ETHYL ACETATE											
12				7 ACETONE											
12															
				p	ID NF Darai	RTL-SAG	2	NR	TL-SA	C para Values	ame	ters	stCALSet	:P	r

- Step 7: Define the calculation sequence
 - Name the cells, e.g.:
 - "ChangingValues" for NRTL-SAC parameters table (cells J6 to J9)
 - "SetPropertyRange" for the copy of the values of the properties in the calculator (cells L6 to L9)

Name Manager

- "FlashCalculations" for flash calculation (cells of columns N to AK)
- o "Criteria" for relative deviations (cells of column AN)
- "GlobalCriterion" for the criterion to be minimized (cell AP18)
- Access to named cells:

?

X

2021 ProSim S.A. All rights reserved

0

>

Ť

- Step 7: Define the calculation sequence
 - Add a VBA macro (click on ALT+F11)
 - $\circ~$ Define the order of calculation with the named cells defined previously
 - $\,\circ\,$ Once a value of the working table of NRTL-SAC parameters is modified:
 - This property value is pasted in the compound
 - Flash calculation are done
 - Deviations are calculated
 - Global criterion is calculated

(G	eneral)	▼ (Declarations)	•
	Priv	End Sub	<pre>Sub Workbook_SheetChange(ByVal Sh As Object, ByVal Target As Range) Sh.Name = Range("ChangingValues").Parent.Name Then If Not Intersect(Target, Range("ChangingValues")) Is Nothing Then Range("SetPropertyRange").Dirty Application.Calculate Range("FlashCalculations").Dirty Application.Calculate Range("Criteria").Dirty Application.Calculate Range("GlobalCriterion").Dirty Application.Calculate End If If</pre>	
	≣ .			•

- Step 8: Use of the solver
 - Access to the solver
 - o "Data" menu, "Solver"

- Parameters of the solver
 - Minimize global criterion (*GlobalCriterion*)
 - Modifying the table of NRTL-SAC parameters (*ChangingValues*)

Se <u>t</u> Objective:		GlobalCriterio	n	
To: <u>M</u> ax	Mi <u>n</u>	○ <u>V</u> alue Of:	0	
<u>By</u> Changing Var	iable Cells:			
ChangingValues				
S <u>u</u> bject to the Co	onstraints:			
\$J\$6 <= 1			^	Add
				<u>C</u> hange
				<u>D</u> elete
				<u>R</u> eset All
			~	Load/Save
Ma <u>k</u> e Uncon	strained Variables N	on-Negative		
S <u>e</u> lect a Solving Method:	GRG Nonlinear		~	O <u>p</u> tions
Solving Method	i			
Select the GRG Simplex engine problems that a	Nonlinear engine fo for linear Solver Pro ire non-smooth.	or Solver Problems that blems, and select the	t are smooth nonlin Evolutionary engine	ear. Select the LP for Solver

- Results
 - NRTL-SAC parameters of caffeine are obtained

Name: CAFFEINE ID: {EE6DE16D-F90D-473E-B213-CB5197379AFB Original ID: 6853 Original location: Simulis® Compounds Files\Common files\Standard 2017 About properties... Complete Phase thermochemistry 🗄 🥥 Interaction, gas phase reaction 🗄 🥘 User properties E PPC-SAFT E NRTL-SAC Number of hydrophobic segments type (X) -0.033174941001269 Number of hydrophilic segments type (Z) -0.14409829013656 Number of polar segments type (Y-) -0.016502414531919 Number of polar segments type (Y+) 0.37476254595267

 Plot of the obtained curves, compared to experimental points

- Specific binary interaction parameters (BIP)
 - Possibility to give BIP values, specific for the calculated thermodynamic property, depending on the chosen models

Thermodynamic calculator editor X CALCULATOR This window helps you to define the context of your thermodynamic calculator FILE COMPOUNDS MODEL BINARIES PARAMETERS 🗂 Open.. THERMODYNAMIC MODEL Save as.. NRTL Name CONFIGURATION PACKAGE Category All the profiles SERVICES Profile Thermodynamic assistant Calculate Thermodynamic help Export as a PSF file Approach type From activity coefficients -Diagrams • Equation of state **RK** Generalized Alpha function Soave • Export as a PVT file Mixing rules -۲ Water-hydrocarbons model Standard Stream.. • 0 Activity coefficient model NRTL Sol A \bigcirc Standard with Poynting correction -Pure liquid fugacity standard state Sol B ٢ Liquid molar volume Rackett/Campbell-Thodos • MODIFICATIONS The liquid phase splitting is taken into -Transport properties Mixed CONFIGURATION Enthalpy calculation H*=0, ideal gas, 25°C, 1 atm • Name [New calculator] User-defined thermodynamic model -None Comments Model index 🔔 Transport properties options X Calculator type Native 0 Liquid viscosity ndrade (mass) Show the expert mode Gas viscosity Classic methods -Liquid thermal conductivity Classic methods • Ok Cancel Gas thermal conductivity Classic methods • O Surface tension Dutcher • Ok Cancel

Possible specific binaries

No specific binaries

- Examples of thermodynamic properties and associated models that allow to enter specific binary interaction parameters:
 - Equation of state (in heterogeneous approach):
 - Equation of state: SRK-KD, SRK-CPA, PR-CPA, LKP, BWRS, PPC-SAFT...
 - o Mixing rules: Standard, Margules, Van Laar, Soreide-Whitson, Twu, Stryjek-Vera...
 - Equation of state (in homogeneous approach):
 - Complex mixing rules: Wong-Sandler
 - Activity coefficients model:
 - o Wilson, Margules
 - o NRTLs
 - o UNIQUACs
 - Pure liquid fugacity standard state (in heterogeneous approach):
 - Standard with Poynting correction (excess enthalpy calculation)
 - Lois de Henry (MR1 and MR2)
 - Liquid molar volume:
 - o Rackett/Campbell-Thodos
 - Liquid viscosity:
 - o Andrade (molar or mass)
 - Surface tension:
 - o Dutcher

- Specific binary interaction parameters (BIP)
 - All types of binary interaction parameters are accessible:
 - o stCALSetBinariesValues(Name, ICode, Index1, Index2, Values)

to <u>set</u> values of binary interaction parameters (function available in the complementary SPI add-in)

With:

Name : Name of the calculator

- ICode : Code of the thermodynamic property
- Index1: Vector of index for component 1
- Index2: Vector of index for component 2
- Values : Values of binary interaction parameters

Note: In the case of a system with 2 components, each vector of index contains only 1 cell

- Specific binary interaction parameters (BIP)
 - Table of available thermodynamics properties codes:

Name used in SPI add-in	lCode	Description
CodeBinGlobal	-1	Global BIP
CodeBinActivityCoefficient	0	Specific BIP for activity coefficient model
CodeBinEnthalpyCalculation	1	Specific BIP for enthalpy calculation model
CodeBinGasStateEquation	2	Specific BIP for gas equation of state model
CodeBinLiquidFugacity	3	Specific BIP for pure liquid fugacity standard state model
CodeBinLiquidMolarVolume	4	Specific BIP for liquid molar volume model
CodeBinMixtureRules	5	Specific BIP for mixing rules model
CodeBinThermoModel	6	Specific BIP for thermodynamic profile model
CodeBinTransferProperties	7	Specific BIP for transport properties model
CodeBinUserModel	8	Specific BIP for user-defined thermodynamic model
CodeBinVaporPressure	9	Specific BIP for vapor pressure model
CodeBinLiquidViscosity	10	Specific BIP for liquid viscosity model
CodeBinVaporViscosity	11	Specific BIP for vapor viscosity model
CodeBinLiquidConductivity	12	Specific BIP for liquid thermal conductivity model
CodeBinVaporConductivity	13	Specific BIP for vapor thermal conductivity model
CodeBinSurfaceTension	14	Specific BIP for surface tension model
CodeBinAlphaFunction	15	Specific BIP for alpha function model

- Specific binary interaction parameters (BIP)
 - Example: Regress specific binary interaction parameters of Andrade model to represent viscosity of a water acetone mixture

<u>Reference</u>: B.I. Konobeev, V. V. Lyapin, "Density, Viscosity, and Surface Tension Data on Certain Binary Systems", Zh. Prikl. Khim., 43, 803-810 (1970)

• Steps to build the Excel file

- 1- Define the calculator
- 2- Choice of units
- 3- Available experimental data
- 4- Thermodynamic calculations
- 5- Define the deviation minimization criterion between experimental data and the model
- 6- Working table of properties to be regressed
- 7- Define the calculation sequence
- 8- Use of the solver

- Step 1: Define the calculator
 - Import components WATER, ACETONE
 - Choose NRTL thermodynamic profile
 - Import global BIP from the database in the "BINARIES" tab (phase equilibrium calculations)
 - For transport properties, choose Andrade (mass) for liquid viscosity

Transport properties option	ns	×							
Liquid viscosity	Andrade (mass)								
Gas viscosity	Classic methods								
Liquid thermal conductivity	Classic methods								
Gas thermal conductivity	Classic methods	Binaries editor					-		×
Surface tension	Classic methods Ok Car	BINARIES	Binaries view: (This window help calculations These parameters	Grid C I	Matrix Dinaries to tai f those define	ke into account o ed in the "Binarie	during thermo	odynamic e calculato	or.
		Clear all binaries	Compound	Compound	aij	bij	cij	dij	
		Estimate binaries	WATER	ACETONE					
		MODIFICATIONS A							
			Not supplied	Supplied	Imported	Estimated			
		Unit							
		parameters will be ignored					Ok	Ca	incel

- Step 2: Choice of units
 - Right-click on the calculator object
 - o Edit the input unit system
 - o Edit the output unit system
 - Choose "°C" for temperature, "atm" for pressure "Pa.s" for dynamic viscosity
 - Visualize the units used in the Excel worksheet
 - Simulis function: stCALGetUnitNameInSystem()

- Step 3: Available experimental data
 - Enter experimental viscosities available for the system (Konobeev et al., 1970)
 - o Pressure
 - o Temperatures
 - Compositions (molar fractions)
 - Viscosities

1	A	В	C	D	E	F	G
1	Sim	ulis Calculator			1	2	
2		Calc		Temperature	°C	°C	
3				Pressure	atm	atm	
4	Calc			Dynamic Viscosity	Pa.s	Pa.s	
5							
6							
7							
8			1	WATER			
9			2	ACETONE			
10							
11			P (atm)	1			
12							
13							
14							
15							
16		Experimenta	Idata				
17				Tem	perature (°C)		
18		Water	Acetone	20	40	60	
19		1	0	0.001002	0.000656	0.000469	
20		0.936	0.064	0.001447	0.000872	0.000594	
21		0.93	0.07	0.00147	0.000885	0.0006	
22		0.928	0.072	0.001479	0.000887	0.000603	
23		0.843	0.157	0.001569	0.000939	0.000632	
24		0.83	0.17	0.001567	0.000933	0.00063	
25		0.828	0.172	0.001566	0.000932	0.000629	
26		0.749	0.251	0.001444	0.000855	0.00058	
27		0.706	0.294	0.001316	0.000799	0.000549	
28		0.606	0.394	0.000988	0.000673	0.000486	
29		0.597	0.403	0.000965	0.000664	0.000475	
30		0.474	0.526	0.000709	0.000526		
31		0.42	0.58	0.000622	0.000471		
32		0.259	0.741	0.000439	0.000346		
33		0.22	0.78	0.000411	0.00033		
34		0.142	0.858	0.000372	0.000306		
35		0	1	0.000325	0.000273		
36							
37							
20							

- Step 4: Thermodynamic calculations
 - Liquid dynamic viscosity calculation at given temperature and pressure
 - Simulis function: *stCALMuL()*
 - Results:
 - Liquid viscosity of the mixture

STE	DEV -	: ×	✓ f _x	=stCALMuL(\$A\$4; <mark>H\$</mark>	18;\$D\$11;\$B1	l9:\$C19)					
	А	В	с	D	E	F	G	Н	1	J	к
1	Sim	ulis Calculator			1	2					
2	\diamond	Calc		Temperature	°C	°C					
3				Pressure	atm	atm					
4 (Calc	Ī		Dynamic Viscosity	Pa.s	Pa.s					
5											
6											
7									aij	bij	cij
8			1	WATER				BIP	2.77550985	0.00975755	0.53782
9			2	ACETONE				ICode	10		
10								SetProperty	Updated		
11			P (atm)	1	Ī						
12					Ī						
13											
14											
15											
16		Experimenta	al data					Simulis Calc	ulation		
17				Temp	perature (°C)			Te	emperature (°	C)	
18		Water	Acetone	20	40	60		20	40	60	
19		1	. 0	0.001002	0.000656	0.000469		319:\$C19)	0.00067111	0.00047421	
20		0.936	0.064	0.001447	0.000872	0.000594		0.00126525	0.00086759	0.00063421	
21		0.93	0.07	0.00147	0.000885	0.0006		0.00127793	0.00087933	0.00064456	
22		0.928	0.072	0.001479	0.000887	0.000603		0.00128179	0.00088299	0.00064783	
23		0.843	0.157	0.001569	0.000939	0.000632		0.00130785	0.000939	0.00071198	
24		0.83	0.17	0.001567	0.000933	0.00063		0.00129418	0.00093416	0.00071132	
25		0.828	0.172	0.001566	0.000932	0.000629		0.00129181	0.00093319	0.00071103	
26		0.749	0.251	0.001444	0.000855	0.00058		0.00115973	0.00086152	0.00067118	

- Step 5: define the minimization criterion between experimental data and the model
 - Deviation function between experimental viscosity and calculated viscosity:

%AAD =
$$\frac{100}{N_p} \sum_{i=1}^{N_p} |\mu_i^{exp} - \mu_i^{calc}|$$

With:

- % AAD: Average Absolute Deviation
- N_p : Number of experimental points
- $\circ \mu_i^{exp}$: Experimental viscosity of the mixture
- $\circ~\mu_i^{calc}~$: Calculated viscosity of the mixture

- Step 6: Working table of properties to be regressed
 - Values of specific binary interaction parameters of Andrade model
 o Initial (e. g. 0; 0; 0; 0), then modified after regression
 - Code of specific BIP for the thermodynamic property to be modified
 - ICode=10 for liquid viscosity
 - Copy BIP values in the calculator
 - Use of <u>SPI Simulis</u> function: *stCALSetBinariesValues()*
 - Result of this function is "Updated"

- Step 7: Define the calculation sequence
 - Name the cells, e.g.:
 - "ChangingValues" for the BIP table (cells 18 to L8)
 - "SetPropertyRange" for the copy of the values of the properties in the calculator (cell 110)

Name Manager

- "Calculations" for properties calculations (cells H19 to J35)
- o "Deviations" for deviations calculations (cells L19 to N35)
- "GlobalCriterion" for the criterion to be minimized (cell N14)
- Access to named cells:

?

×

2021 ProSim S.A. All rights reserved

- Step 7: Define the calculation sequence
 - Add a VBA macro (click on ALT+F11)
 - Define the order of calculation with the named cells defined previously
 - Once a value of the working table of the BIP is modified:
 - This property value is pasted in the compound
 - Flash calculation are done
 - Deviations are calculated
 - Global criterion is calculated

(0	General)		(Declarations)	•
	Priv	ate If S	<pre>sub Workbook_SheetChange(ByVal Sh As Object, ByVal Target As Range) Sh.Name = Range("ChangingValues").Parent.Name Then If Not Intersect(Target, Range("ChangingValues")) Is Nothing Then Range("SetPropertyRange").Dirty Application.Calculate Range("Calculations").Dirty Application.Calculate Range("Deviations").Dirty Application.Calculate Range("GlobalCriterion").Dirty Application.Calculate End If</pre>	•
	1	End	l If	
	End :	Sub		
E	≣ ◀			•

- Step 8: Use of the solver
 - Access to the solver
 - o "Data" menu, "Solver"

- Parameters of the solver
 - Minimize global criterion (*GlobalCriterion*)
 - Modifying the table of the BIP (*ChangingValues*)

Se <u>t</u> Objective:		GlobalCriterior	n	
To: <u>M</u> ax	Mi <u>n</u>	○ <u>V</u> alue Of:	0	
By Changing Vari	able Cells:			
ChangingValues				-
S <u>u</u> bject to the Co	nstraints:			
			^	Add
				<u>C</u> hange
				Delete
				<u>R</u> eset All
			~	Load/Save
Make Uncons	trained Variables No	on-Negative		
S <u>e</u> lect a Solving Method:	GRG Nonlinear		~	O <u>p</u> tions
Solving Method				
Select the GRG I Simplex engine problems that a	Vonlinear engine fo for linear Solver Pro re non-smooth.	r Solver Problems that blems, and select the	t are smooth nonl Evolutionary engi	linear. Select the LP ine for Solver

- Results
 - Specific binary interaction parameters are obtained to represent the liquid viscosity of the mixture with the Andrade (mass) model

Binaries editor					-					
	Binaries view: 🔘	Grid O M	atrix							
BINARIES	This window helps calculations	you to enter the bir	naries to take in	nto account du	ring thermody	namic				
ACTIONS — 🔺	These parameters a	re used instead of t	hose defined in	n the "Binaries"	page of the ca	lculator.				
import binaries	Formulation : aij, bij, cij, dij									
🐨 Clear all binaries	Compound	Compound	aij	bij	cij	dij				
	WATER	ACETONE	2.7755098511	0.0097575501	0.5378211827	0.0019081481				
🚛 Save the binaries										
🔊 Undo										
🐴 Redo	Not supplied	Supplied	mported	Estimated						
OPTIONS A	Comments :									
Unit										
· ·										
parameters will be ignored					Ok	Cancel				

• Plot of the results, compared to experimental points

3- Regression of binary interaction parameters ³⁵ for solid-liquid equilibria

- Binary interaction parameters (BIP) for solid-liquid equilibria
 - No Simulis function with the Kij extension exists for phase equilibria with solid
 - All types of binary interaction parameters are accessible:
 - o stCALSetBinariesValues(Name, ICode, Index1, Index2, Values)

to <u>set</u> values of binary interaction parameters (function available in the complementary SPI add-in)

With:

- Name : Name of the calculator
- ICode : Code of the thermodynamic property
- Index1: Vector of index for component 1
- Index2 : Vector of index for component 2
- Values : Values of binary interaction parameters

Note: In the case of a system with 2 components, each vector of index contains only 1 cell

3- Regression of binary interaction parameters ³⁶ for solid-liquid equilibria

- Binary interaction parameters (BIP) for solid-liquid equilibria
 - Access to available thermodynamic code: ICode=-1

Name used in SPI add-in	lCode	Description
CodeBinGlobal	-1	Global BIP

• ICode=-1 directly corresponds to parameters located in the "BINARIES" tab of the calculator:

Thermodynamic calculator editor				×
CALCULATOR	This window helps you to define the context of your thermodynamic calculator			
FILE 🔶 🔺	COMPOUNDS MODEL BINARIES PARAMETERS			
Save as	These parameters correspond to the general values and are used if the user has not provided specific parameters (buttons to the thermodynamic profile)	right of each option in the		
	Binaries view: ⊙ Grid ○ Matrix Formulation : gij - gjj = Cij0 + CijT*(T - 273.15), aij = aij0 + aijT*(T - 273.15)	BINARIES		
Galculate	Compound Compound Cij0 Cji0 aij0 CijT cjiT aijT ACETONE ACETYLSALICYLIC ACID	ACTIONS		
 Export as a PSF file Diagrams 		 Import binaries Clear all binaries 		
Residue		Estimate binaries		
Export as a PVT file Stream		Save the binaries		
🧏 Sigma profiles		Unit		
		cal/mole	ored	•
		parameters will be ign	Iorea	

3- Regression of binary interaction parameters ³⁷ for solid-liquid equilibria

- Binary interaction parameters (BIP) for solid-liquid equilibria
 - Example: Regress NRTL binary interaction parameters tor represent the solubility of aspirin in acetone

<u>Reference</u>: G.D. Maia, M. Giulietti, "Solubility of Acetylsalicylic Acid in Ethanol, Acetone, Propylene Glycol, and 2-Propanol", J. Chem. Eng. Data, 53 (1), 256-258 (2008)

• Steps to build the Excel file

- 1- Define the calculator
- 2- Choice of units
- 3- Available experimental data
- 4- Thermodynamic calculations
- 5- Define the deviation minimization criterion between experimental data and the model
- 6- Working table of properties to be regressed
- 7- Define the calculation sequence
- 8- Use of the solver

3- Regression of binary interaction parameters ³⁸ for solid-liquid equilibria

- Step 1: Define the calculator
 - Import components ACETONE, ACETYLSALICYLIC ACID
 - Choose NRTL thermodynamic profile
 - Access to global binary interaction parameters, "BINARIES" tab

Thermodynamic calculator editor		– 🗆 X
CALCULATOR FILE Open Save as PACKAGE	This window helps you to define the context of your thermodynamic calculator COMPOUNDS MODEL BINARIES PARAMETERS These parameters correspond to the general values and are used if the user has not provided specific parameters (buttons to the thermodynamic profile) Binaries view: © Grid C Matrix	e right of each option in the
SERVICES Calculate Calculate Calculate Comments Configuration Configurat	Formulation : gij - gij = Cij0 + CijT*(T - 273.15), aij = aij0 + aij1*(T - 273.15) Compound Cij0 aij0 CijT aijT ACETONE ACETYLSALICYLIC ACID Image: Compound in the second	BINARIES ACTIONS Clear all binaries Etimate binaries OPTIONS Unit cal/mole parameters will be ignored
Calculator type Native ▼ ■ Show the expert mode	Not supplied Supplied Comments :	Ok Cancel

3- Regression of binary interaction parameters ³⁹ for solid-liquid equilibria

- Step 2: Choice of units
 - Right-click on the calculator object
 - o Edit the input unit system
 - o Edit the output unit system
 - Choose "K" for temperature, "atm" for pressure
 - Visualize the units used in the Excel worksheet
 - Simulis function: stCALGetUnitNameInSystem()

E	5-0	~ +						
Fi	le Home	Insert	Page Layout	Formulas	Data	Review	View	Developer
-	Cut		Calibri	- 11 -	A A	= = =	- 18°	ab Wrap
Pas	ste	* It Painter	в <u>г</u> <u>ч</u> ~		~ A ~	$\equiv \equiv =$		Merge
	Clipboard	٦		Font	5		Alig	nment
STE	DEV 👻	: ×	✓ f _x	=stCALGetUn	itNameIn	System(\$A	\$4;E\$1;\$C)2)
	А	В	с	D		E		F
1	Simu	lis Calculator				[1	2
2	\sim	Calc		Temperatur	e	;E\$1;\$D2) <mark>(</mark> K	
3				Pressure		atm	atm	
4 (Calc							
5								
6								

3- Regression of binary interaction parameters ⁴⁰ for solid-liquid equilibria

- Step 3: Available experimental data
 - Enter experimental solubility available for the system (Maia et al., 2008)
 - o Pressure
 - o Temperatures
 - Solubilities (molar fractions)

	A B		В	С	D
1		Simu	lis Calculator		
2			Calc		Temperature
3					Pressure
4	Calc				
5					
6					
7				1	ACETONE
8				2	ACETYLSALICYLIC ACID
9					
10				P (atm)	1
11					
12					
13			Experimenta	l Data	
14			Т (К)	x	
15			281.9	0.061	
16			290.6	0.075	
17			297.9	0.088	
18			304.4	0.101	
19			310.6	0.114	
20			315.3	0.127	
21			319.8	0.139	
22			323.3	0.151	
23			326.3	0.162	
24					

3- Regression of binary interaction parameters ⁴¹ for solid-liquid equilibria

- Step 4: Thermodynamic calculations
 - Vapor-liquid-solid equilibrium calculation at given temperature and pressure
 - Simulis function: stCALFslvTP()
 - Results as a vector (3*NC+3=9 cells, for 2 components):
 - Solid ratio
 - Liquid ratio
 - Vaporization ratio
 - Fractions (molar or mass) in solid phase
 - Fractions (molar or mass) in liquid phase
 - Fractions (molar or mass) in vapor phase

STDEV	* : X	✓ f _x	=stCALFsIvTP(\$A\$4;B15;	;\$D\$10;E15:F1	5)										
4	АВ	С	D	E	F	G	Н	1	J	к	L	м	N	0	P
1	Simulis Calculator			1	. 2										
2	Calc		Temperature	к	К										
3			Pressure	atm	atm										
4 Calc	I														
5															
6								Cij0	Cji0	aij0	CijT	CjiT	ajiT		
7		1	ACETONE				BIP	-1191.817586	2611.388279	0.2	0	0	0		
8		2	ACETYLSALICYLIC ACID				ICode	-1							
9							Set	Updated							
10		P (atm)	1	Ī											
11															
12															
13	Experiment	al Data					Simulis Therm	odynamics Cal	culations						
14	Т (К)	x		z1	z2		Solid Ratio	Liquid Ratio	Vapor Ratio	xS1	xS2	xL1	xL2	yV1	yV2
15	281.	9 0.061		0.5	0.5		0;E15:F15)	0.532486104	0	0	1	0.93899164	0.06100836	0	0
16	290.	5 0.075	5	0.5	0.5		0.459652373	0.540347627	0	0	1	0.92533024	0.07466976	0	0
17	297.	0.088	1	0.5	0.5		0.451818946	0.548181054	0	0	1	0.91210741	0.08789259	0	0
18	304.4	4 0.101		0.5	0.5		0.44372252	0.55627748	0	0	1	0.898832	0.101168	0	0
19	310.	5 0.114	ł	0.5	0.5		0.43484769	0.56515231	0	0	1	0.88471725	0.11528275	0	0
20	315.	3 0.127	7	0.5	0.5		0.427252621	0.572747379	0	0	1	0.87298523	0.12701477	0	0
21	319.	8 0.139		0.5	0.5		0.419177934	0.580822066	0	0	1	0.86084884	0.13915116	0	0
22	323.	3 0.151		0.5	0.5		0.412285726	0.587714274	0	0	1	0.85075354	0.14924646	0	0
23	326.	3 0.162	2	0.5	0.5		0.405903212	0.594096788	0	0	1	0.84161371	0.15838629	0	0
24															

3- Regression of binary interaction parameters ⁴² for solid-liquid equilibria

- Step 5: define the minimization criterion between experimental data and the model
 - Deviation function between experimental solubility and calculated solubility:

%AARD =
$$\frac{100}{N_p} \sum_{i=1}^{N_p} \frac{\left|x_{2i}^{exp} - x_{2i}^{calc}\right|}{x_{2i}^{exp}}$$

With:

- % AARD: Average Absolute Relative Deviation
- N_p : Number of experimental points
- o x_{2i}^{exp} : Experimental solubility of aspirin (molar fraction)
- x_{2i}^{calc} : Calculated solubility of aspirin (molar fraction)

3- Regression of binary interaction parameters ⁴³ for solid-liquid equilibria

- Step 6: Working table of properties to be regressed
 - Values of NRTL binary interaction parameters
 - \circ a_{ij}⁰ is fixed to 0.2, only C_{ij}⁰ and C_{ji}⁰ will be identified
 - o Initial (e.g. -1000; 1000), then modified after regression
 - Code of global BIP
 - o ICode=-1
 - Copy BIP values in the calculator
 - Use of <u>SPI Simulis</u> function: *stCALSetBinariesValues()*
 - Result of this function is "Updated"

BIP values to be regressed

(A	В	C	D	E	F	G	н	1	J	К		M	N
Sim	ulis Calculator			1		2							
\diamond	Calc		Temperature	к	К					/			
			Pressure	atm	atm								
Calc	Ī												
								Cij0	Cji0	📕 aij0	CijT	CjiT	ajiT
			1 ACETONE				BIP	-1191.817586	2611.388279	0.2	0	0	0
			2 ACETYLSALICYLIC ACID				ICode	-1					
							Set	ingValues)					
		P (atm)	1	L									
				Ther	mo co	de			stCAI	SetBi	N aries	Values	5()

3- Regression of binary interaction parameters ⁴⁴ for solid-liquid equilibria

- Step 7: Define the calculation sequence
 - Name the cells, e.g. :
 - "ChangingValues" for the BIP table (cells I7 to N7)
 - "SetPropertyRange" for the copy of the values of the properties in the calculator (cell 19)

Name Manager

?

×

2021 ProSim S.A. All rights reserved

0

₫

- "Calculations" for properties calculations (cells H15 to P23)
- o "Deviations" for deviations calculations (cells R15 to R23)
- "GlobalCriterion" for the criterion to be minimized (cell R11)
- Access to named cells:

3- Regression of binary interaction parameters⁴⁵ for solid-liquid equilibria

- Step 7: Define the calculation sequence
 - Add a VBA macro (click on ALT+F11)
 - Define the order of calculation with the named cells defined previously
 - $\,\circ\,$ Once a value of the working table of the BIP is modified:
 - This property value is pasted in the compound
 - Flash calculation are done
 - Deviations are calculated
 - Global criterion is calculated

(0	ieneral)		(Declarations)	•
	Priva I End S	ate Suk If Sh.1 If End If Sub	<pre>D Workbook_SheetChange(ByVal Sh As Object, ByVal Target As Range) Name = Range("ChangingValues").Parent.Name Then Not Intersect(Target, Range("ChangingValues")) Is Nothing Then Range("SetPropertyRange").Dirty Application.Calculate Range("Calculations").Dirty Application.Calculate Range("Deviations").Dirty Application.Calculate Range("GlobalCriterion").Dirty Application.Calculate If</pre>	•
=[:	≣◀			

3- Regression of binary interaction parameters ⁴⁶ for solid-liquid equilibria

- Step 8: Use of the solver
 - Access to the solver
 - o "Data" menu, "Solver"

File Ho	ome Insert F	age Layout	Formulas D	Data Review	View	Developer	Add-ins	Help						Q Tell me	what you want	to do			0	1	12
From From Access Web	From From Othe Text Sources ~	r Existing Connections	New Query ~ Co	Show Queries From Table Recent Source	Refrest All ~	Connections	Ž↓ Z Z Z↓ Sor	Filte	Clear	Text to Columns	Flash Fill	Remove Duplicates	Data /alidation	Consolidate	Relationships	What-If Analysis	Forecast Sheet	Group Ung	roup Subtot	*플 Show Detail "플 Hide Detail al	?₄ Solver
	Get External Data		Get &	Transform		Connections		Sort &	Filter			I	ata Tools			For	ecast		Outline		Analyze

- Parameters of the solver
 - Minimize global criterion (*GlobalCriterion*)
 - Modifying the C_{ii}^{0} and C_{ii}^{0} parameters (*I7 and J7*)

Se <u>t</u> Objective:			GlobalCriterio	n	1			
To: O <u>N</u>	<u>/l</u> ax	• Mi <u>n</u>	○ <u>V</u> alue Of:	0				
By Changing \	/ariable C	ells:						
SIS7:SJS7					1			
Subject to the	Constrai	nts:						
				^	Add			
					<u>C</u> hange			
					<u>D</u> elete			
					<u>R</u> eset All			
				~	<u>L</u> oad/Save			
Ma <u>k</u> e Unc	onstraine	d Variables No	n-Negative					
S <u>e</u> lect a Solvin Method:	g GR	G Nonlinear		\sim	Options			
Solving Meth	nod							
Select the GF Simplex engi problems tha	RG Nonlin ne for lin at are nor	ear engine for ear Solver Prob I-smooth.	Solver Problems tha lems, and select the	t are smooth nonlin Evolutionary engin	near. Select the LP e for Solver			

3- Regression of binary interaction parameters ⁴⁷ for liquid-solid equilibria

Results

 NRTL binary interaction parameters are obtained to represent the solubility of aspirin in acetone

• Plot of the results, compared to experimental points

Software & Services In Process Simulation

We guide You to efficiency

ProSim SA

51, rue Ampère Immeuble Stratège A F-31670 Labège France

*****: +33 (0) 5 62 88 24 30

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

www.prosim.net

info@prosim.net

2: +1 215 600 3759