

PROSIMPLUS APPLICATION EXAMPLE

PRODUCTION AND VALORIZATION OF BIOGAS PRODUCED BY METHANIZATION

	EXAMPLE PURPOSE					
			nulation of a methanization process posteam with a boiler.	roducing biogas. Th	e produced biogas is	
Access	▼ Free	e Internet	Restricted to ProSim clients	Restricted	☐ Confidential	
CORRESPONDING PROSIMPLUS FILES		PSPS_EX_EN-Production-and-valorisation-biogaz-methanisation-water-absorption.pmp3				
		PSPS_EX_	EN-Production-and-valorisation-biogaz-n	nethanisation-amines	s-absorption.pmp3	

Reader is reminded that this use case is only an example and should not be used for other purposes. Although this example is based on actual case it may not be considered as typical nor are the data used always the most accurate available. ProSim shall have no responsibility or liability for damages arising out of or related to the use of the results of calculations based on this example.

Version: January 2022 Page: 2 /30

TABLE OF CONTENTS

I. PF	ROCESS MODELING	3
1.1.	Process description	3
1.2.	Simulation flowsheets	5
1.3.	Components	7
1.4.	Thermodynamic model	8
1.5.	Operating conditions	9
1.5	i.1. "Biogas production" section	9
1.5	5.2. "Gas treatment" section	10
1.5	5.3. "Heat production" section	16
1.5	i.4. Heat recovery	17
1.6.	Initialization	18
1.6	5.1. Water treatment case	18
1.6	5.2. Amine treatment case	18
1.7.	"Tips and tricks"	19
1.7	'.1. LHV calculation	19
1.7	7.2. Temperature profiles	23
1.7	'.3. Recovery ratios	25
2. RE	ESULTS	27
2.1.	Process Performance	27
2.2.	Biogas properties	27
2.2	2.1. Water absorption case	27
2.2	2.2. Amine absorption case	28
2.3.	Digestate properties	28
2.4.	Boiler properties	28
3. Re	FERENCES	30

Version: January 2022 Page: 3/30

1. Process modeling

1.1. Process description

Methanization is a process which produces biogas from organic matter.

Volatile matter (VM) is the organic part of the treated mixture, *i.e.*, the components capable of producing biogas. The treated mixture is composed of all the components entering the "Methanization reactor".

This material is, once placed in anaerobic digesters (deprived of oxygen), broken down by micro-organism to form biogas, consisting mainly of methane (CH_4) and carbon dioxide (CO_2) and digestate (organic or inorganic material remaining after the anaerobic digestion).

However, the biogas contains several pollutants, including sulfur compounds, organo-halogens, VOCs.

In order to improve the biogas quality (biogas upgrading), it is usually purified to remove these undesired substances. The main reason of this biogas upgrading is to avoid corrosive phenomena and mechanical wear of the downstream equipment.

The biogas can be used in different ways: heat production (combustion in a boiler), electricity production (gas boiler with a steam turbine, fuel engine, and gas turbine), cogeneration (production of electricity and wasted heat recovery), and production of fuel or even gas grid injection.

The treatment of municipal waste by anaerobic digestion started at industrial scale in 1988 with the world's first installation in Amiens (France), treating 80 000 t/year of household waste and using a digester developed by the Valorga company. Since then, improvements in the quality of collected and/or sorted waste has allowed a significant development of this technology in Europe and around the world [APE07].

The Valorga process is based on anaerobic treatment of wet organic waste. The process is composed of an upstream input sorted by a waste-sorting line in order to eliminate as much undesirable products as possible (metals, scrap iron, glass, etc.). A boiler is powered downstream to produce steam with the biogas. The process treats 110 000 t/year of waste, 30 000 t/year of which are removed by sorting. In the end, 80 000 t/year of waste is treated in the digesters ([ROB21] and [VAL21]).

Version: January 2022 Page: 4/30

This example presents the valorization of the gas, by heat production with a boiler.

In this context, the process is separated into 3 parts:

- ✓ A part for biogas production;
- ✓ A part for biogas treatment (biogas upgrading);
- ✓ A part for heat production.

This example also presents 2 upgrading methods for the treatment of the biogas:

- ✓ Absorption-desorption treatment with water (water washing);
- ✓ Absorption-desorption treatment with a mixture of monoethanolamine (MEA) and water (amine gas treatment).

Version: January 2022 Page: 5 /30

1.2. <u>Simulation flowsheets</u>

Simulation process with water treatment

Version: January 2022 Page: 6 /30

Simulation process with amines treatment

Version: January 2022 Page: 7 /30

1.3. Components

The components taken into account in the simulation are listed in the table below, as well as their chemical formula and their CAS numbers¹. The properties of pure substances are taken from the standard database of ProSim [WIL21].

Component	Chemical formula	CAS number ⁽¹⁾
Water	H ₂ O	7732-18-5
Oxygen	02	7782-44-7
Hydrogen	H ₂	1333-74-0
Nitrogen	N ₂	7727-37-9
Carbon dioxide	CO ₂	124-38-9
Methane	CH ₄	74-82-8
Ammonia	NH ₃	7664-41-7
Hydrogen sulfide	H ₂ S	7783-06-4
Sulphur dioxide	SO ₂	7446-09-5
Nitric oxide	NO	10102-43-9
Nitrogen dioxide	NO ₂	10102-44-0
Carbon monoxide	СО	630-08-0
Sulphur trioxide	SO ₃	7446-11-9
Monoethanolamine	C_2H_7NO	141-43-5

¹ CAS Registry Numbers® are the intellectual property of the American Chemical Society and are used by ProSim SA with the express permission of ACS. CAS Registry Numbers® have not been verified by ACS and may be inaccurate.

Version: January 2022 Page: 8/30

1.4. Thermodynamic model

Four thermodynamic "calculator" are defined to simulate this example:

- ➤ "Process": this calculator contains all the components defined above except hydrogen and sulfur trioxide. It is used for the biogas production and its treatment sections (water absorption only). "PSRK" profile is selected.
- > "Fumes": this calculator contains all the components defined previously except nitrogen dioxide. It is specifically used for the heat production part. The thermodynamic model selected is the "Ideal" profile.
- "Utility": this calculator is only used for the water streams through the boiler. Therefore, the "pure water" model is selected.
- > "Amine treatment": this calculator contains all the components defined previously except hydrogen and sulfur trioxide. It is used for the gas treatment part for the amine absorption case. The "Amines and acid gases" thermodynamic profile is used.

Version: January 2022 Page: 9/30

1.5. Operating conditions

1.5.1. "Biogas production" section

✓ Methanization reactor "Methanization reactor"

Mass compositions on dry (%)		
Carbon	44.5	
Hydrogen	5	
Oxygen	10	
Nitrogen	0.4	
Sulfur	0.1	
Water	45	
Manganese	40	
Mass flowrate (kg/h)	9129.6	
Inlet pressure (atm)	1	

Treated waste flow = 80 000 t/year = 9.13 t/h (operating 365 days/year, 24 hours/day).

✓ Generalized compressor "Compressor"

Type of compressor	Isentropic	
Exhaust pressure (bar)	9	
Isentropic efficiency	0.7	
Mechanical efficiency	0.8	
Electrical efficiency	0.9	

Version: January 2022 Page: 10 /30

1.5.2. "Gas treatment" section

1.5.2.1. Water absorption case

√ Feeds

Name:	Make up	Air
Fractions:	mass	molar
Water	1	0
Oxygen	0	0.21
Nitrogen	0	0.79
Carbon dioxide	0	0
Methane	0	0
Ammonia	0	0
Hydrogen sulfide	0	0
Nitric oxide	0	0
Nitrogen dioxide	0	0
Mass flowrate (kg/h)	10	43200
Temperature (°C)	25	25
Pressure (bar)	4	1.01325

The "Make up" feed flowrate is initialized at 10 kg/h. This flowrate is an action variable of the "Constraints and recycles" module described in the following paragraphs.

✓ Coolers/Heaters

Name	Outlet temperature (°C)
HEX 1	50
HEX 2	30
HEX 3	7

✓ Stream splitter "Splitter"

Supplied specification	Splitting ratio	
Splitting ratio	0.95	
Automatically calculated stream	stream entering into the mixer	

Version: January 2022 Page: 11 /30

✓ Centrifugal pump "pump"

Supplied specification	Pressure	
Exhaust pressure (bar)	9	
Volumetric efficiency	0.65	
Mechanical efficiency	0.9	
Electrical efficiency	0.98	

✓ Water balance "Water balance"

Inle	et	Outlet		
From	То	From	То	
HEX 1	HEX 2	Water flowrate 2	Waste gas	
Make up	Mixer	Water flowrate 3	Purge	
Air	Stripper	Absorber	Water flowrate	

✓ Columns

Name	Absorber	Stripper
Number of stages	10	10
Pressure (bar)	9	4
Stages efficiency	1	1

Version: January 2022 Page: 12 /30

✓ Expansion valve "Valve"

Constraint type	Pressure specification	
Pressure specification (bar)	4	

✓ Simple heat exchanger "HEX2-bis"

Heat duty (kcal/h)	Transferred (information stream) from HEX2
--------------------	--

✓ Management of constraints and recycle (SPEC). The "Constraints and Recycles" module is necessary in order to adjust the make-up flowrate. The configuration of this module is as described below.

The value of the initial damping factor has been changed from 1 to 0.1 to ensure convergence of the simulation file.

This "Constraints and Recycles" (SPEC) gets the deviation between the water inlets and outlets calculated with the "Water balance" module and adjusts the "Make up" feed water flowrate in order to determine the water make up.

Version: January 2022 Page: 13/30

1.5.2.2. Amine treatment case

It should be noted that a more detailed example about CO₂ treatment with aqueous solution of alkanolamines is available in the ProSimPlus examples library. This detailed example is named: "PSPS_E19_EN_CO2-capture-with-amine-process.pmp3".

✓ Calculator Switch

Thermodynamic model	"Amine treatment"
---------------------	-------------------

√ Feeds

Name:	Make up Water	Make up MEA	Air
Fractions:	mass	mass	mole
Water	1	0	0
Oxygen	0	0	0.21
Nitrogen	0	0	0.79
Carbon dioxide	0	0	0
Methane	0	0	0
Ammonia	0	0	0
Hydrogen sulfide	0	0	0
Nitric oxide	0	0	0
Nitrogen dioxide	0	0	0
Monoethanolamine	0	1	0
Mass flowrate (kg/h)	725	320	43200
Temperature (°C)	25	25	25
Pressure (bar)	4	4	1.01325

The "Make up Water" and "Make up MEA" feed flowrates are respectively initialized at 725 kg/h and 320 kg/h. These flowrates are action variables of the "Constraints and recycles" module, as described in the following paragraphs.

Version: January 2022 Page: 14 /30

√ Coolers/Heaters

Name	Outlet temperature (°C)
HEX 1	55
HEX 2	30
HEX 3	7
HEX 4	40

✓ Generalized balance "Generalized balance"

Inlet		Outlet		
From	То	From	То	
HEX 2	Absorber	Water flowrate 2	Waste gas	
Make up MEA	Mixer	Water flowrate 3	Purge	
Air	Stripper	Absorber	Water flowrate	
Make up water	Mixer			

Version: January 2022 Page: 15/30

✓ Simple heat exchanger "HEX2-bis"

Heat duty (kcal/h) Transferred (information stream) from HEX2

The "Splitter", "Pump", "Absorbers", "Valve" and "Constraints and Recycles" modules are configured with the same parameters as in the water treatment case. The module "Contraints and recycles" gets the deviation between water and monoethanolamine (MEA) inlets and outlets calculated with the "Generalized balance" and adjusts the "Make up water" and "Make up MEA" feeds flowrates in order to determine the water and monoethanolamine make-ups.

Version: January 2022 Page: 16/30

1.5.3. "Heat production" section

✓ Feed

Name:	Condensate	
Molar fractions:		
Water	1	
Oxygen	0	
Nitrogen	0	
Carbon dioxide	0	
Methane	0	
Ammonia	0	
Hydrogen sulfide	0	
Nitric oxide	0	
Nitrogen dioxide	0	
Mass flowrate (kg/h)	9000	
Temperature (°C)	45	
Pressure (bar)	18	

✓ Calculator Switch

Thermodynamic model	"Fumes"
---------------------	---------

✓ Boiler "Boiler"

Exchanger type	Pure counter current
Fumes temperature at the outlet of the unit provided (°C)	250
Combustive type	Air
% mass content of $oldsymbol{o}_2$ in fumes at the combustion outlet	3
Inlet pressure (atm)	1

✓ Simple heat exchanger "HEX1-bis"

Heat duty (kcal/h)	Transferred (information stream) from HEX1
--------------------	--

Note: All mixers are configured with default values (outlet pressure is the lowest of all feeds).

Version: January 2022 Page: 17/30

1.5.4. Heat recovery

The 2 coolers/heaters of the "Gas treatment unit" part are connected to 2 simple heat exchangers by information streams. These information streams are used to transfer the heat duties calculated by the coolers to heat the biogas and the condensates of the boiler. The streams are configured as below:

Version: January 2022 Page: 18/30

1.6. Initialization

1.6.1. Water treatment case

The calculation sequence is automatically determined by ProSimPlus. A tear stream is detected: the material stream "16" (pump outlet upstream of the absorber). The following initialization is used:

Material stream	16	
Mass flowrate (kg/h)		
Water	25 500	

1.6.2. Amine treatment case

The calculation sequence is automatically determined by ProSimPlus. A tear stream is detected: the material stream "19" (pump output upstream of the absorber). The following initialization is used:

Material stream	19	
Mass flowrate (kg/h)		
Water	819.09	
Oxygen	$1.76 * 10^{-2}$	
Nitrogen	$3.05*10^{-2}$	
Carbon dioxide	50.24	
Methane	0	
Ammonia	1,93	
Hydrogen sulfide	$4.75 * 10^{-5}$	
Nitric oxide	0	
Nitrogen dioxide	0	
Monoethanolamine	108.21	

Version: January 2022 Page: 19/30

1.7. "Tips and tricks"

1.7.1. LHV calculation

The scriptlet "LHV / HHV / BMP" is used to compute the Lower Heating Value (LHV, amount of heat released by the complete combustion of a fuel under normal atmospheric pressure) of the biogas from the digester and the biogas after treatment.

Version: January 2022 Page: 20/30

Biogas heating value before treatment:

Version: January 2022 Page: 21/30

Biogas heating value after treatment with water:

Version: January 2022 Page: 22 /30

Biogas heating value after treatment with amines:

The biogas heating value is better after treatment because the methane composition is higher (the treatment removed unwanted components and also part of the carbon dioxide). The LHV is even higher for the amine absorption case; this treatment is more efficient (because the amine absorption is more selective to the carbon dioxide).

Version: January 2022 Page: 23 /30

1.7.2. Temperature profiles

This second scriptlet allows to obtain the heat exchangers temperature profiles. The simulation of a "cooler/heater – Simple heat exchanger" association (modules linked by an information stream transferring the exchanged heat duty) is the same as the simulation of a generalized heat exchanger. It is therefore possible to compare the temperature profiles of the hot source and the cold source.

First, the exchanger type must be chosen. This one is in a counter-current configuration:

Version: January 2022 Page: 24 /30

The following temperature profile is obtained:

Version: January 2022 Page: 25 /30

1.7.3. Recovery ratios

This scriptlet calculates the columns recovery ratios.

It is possible to calculate the recovery ratios on the overall process or on a targeted unit operation.

The recovery ratios are obtained for each stream and each compound, as shown in the window below.

Here the scriptlet is used to calculate the recovery ratios for the "Absorber" module for the water treatment case, and then for the amine treatment case.

Version: January 2022 Page: 26/30

Version: January 2022 Page: 27 /30

2. RESULTS

2.1. Process Performance

Simulation results	
CH_4 yield (Nm^3 of CH_4 /t of inlet VM)	251
Biogas yield (Nm^3 of biogas/t of inlet treated load)	144
Overall conversion rate	0.29
COD slaughter rate	0.29

2.2. Biogas properties

2.2.1. Water absorption case

	Before treatment	After treatment	
Mass fractions:			
Ammonia	$1.36 * 10^{-3}$	1,3 * 10 ⁻⁵	
Water	0.05	9.8 * 10 ⁻⁴	
Carbon dioxide	0.59	0.58	
Methane	0.35	0.42	
Hydrogen sulfide	$1.02 * 10^{-3}$	8.7 * 10 ⁻⁴	
LHV of the biogas (kWh/Nm³)	5.73	6.62	

Version: January 2022 Page: 28 /30

2.2.2. Amine absorption case

	Before treatment	After treatment	
Mass fractions:			
Ammonia	$1.36 * 10^{-3}$	3,0 * 10 ⁻⁵	
Water	0.05	$1.45 * 10^{-3}$	
Carbon dioxide	0.59	$1.22 * 10^{-4}$	
Methane	0.35	0.996	
Hydrogen sulfide	$1.02 * 10^{-3}$	0	
LHV of the biogas (kWh/Nm³)	5.73	9.92	

2.3. <u>Digestate properties</u>

The simulated digestate flowrate is 7.6 t/h and 45% moisture (mass). This digestate is then pressed to obtain:

- A stream of juice (2.8 t/h or 24 500 t/year).
- An affinate stream (4.8 t/h, 0.5 t/h of water and 4.3 t/h of undegraded material, or 42 000 t/year).

For this example, the stream of digestate from the methanizer was not simulated. The information above is available in the "Methanization reactor" module report.

2.4. Boiler properties

Steam output mass flowrate (t/h)	9
Steam outlet temperature (°C)	258 (water treatment) / 269°C (amines treatment)
Outlet temperature (°C)	250
Steam outlet pressure (bar)	18
Overall useful power (MW)	6.64

Version: January 2022 Page: 29 /30

The temperature profile in the boiler's internal heat exchanger according to the power exchanged:

AIChE: New York, NY (2021).

Version: January 2022 Page: 30 /30

Méthanisation et production de biogaz, Etat de l'art. Apesa, Version 1, 2007.

3. REFERENCES

[APE07]

[ROB21] Les procédés biologiques. Robert AFIF et Daniel Houlle.

http://dechetsdesmenages.typepad.fr/about.html [page consulted on 11/25/2013].

[VAL21] Le procédé de méthanisation Valorga. Société Valorga International.

http://www.valorgainternational.fr [page consulted on 11/25/2013].

[WIL21] Wilding, W. V.; Knotts, T. A.; Giles, N. F.; Rowley, R. L.

DIPPR Data Compilation of Pure Chemical Properties; Design Institute for Physical Properties,