

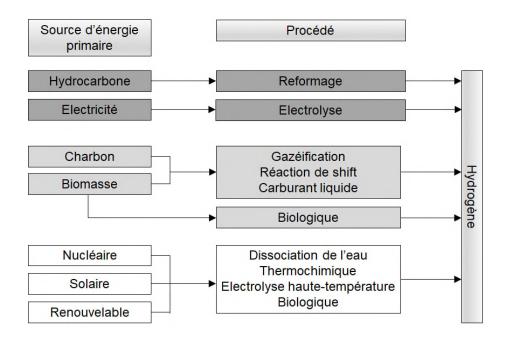
	EXEMPLE D'APPLICATION PROSIMPLUS HNO3						
	PROCEDE DE SYNTHESE DE L'AMMONIAC						
		ln	TERET DE L'EXEMPLE				
simulati	mple présente le procédé dons : une simulation est dé ses spécificités technologic	ediée à l'ense	mble du procédé et ur	ne autre au réacteur s	seul afin de pre		
Diffusio	DIFFUSION Libre Internet Réservé clients ProSim Restreinte Confide						
FICHIERS PROSIMPLUS HNO3 CORRESPONDANTS PSPH_EX_FR-Procédé-Synthèse-Ammoniac.pmp3 PSPH_EX_FR-Réacteur-Synthèse-Ammoniac.pmp3							
			,				

Il est rappelé au lecteur que ce cas d'utilisation est un exemple et ne doit pas être utilisé à d'autres fins. Bien que cet exemple soit basé sur un cas réel il ne doit pas être considéré comme un modèle de ce type de procédé et les données utilisées ne sont pas toujours les plus exactes disponibles. ProSim ne pourra en aucun cas être tenu pour responsable de l'application qui pourra être faite des calculs basés sur cet exemple.

Version : Mai 2023 Page : 2 /28

TABLE DES MATIÈRES

1.	MODELISATION DU PROCEDE	3
	1.1. Présentation du procédé	3
	1.2. Schéma de simulation	6
	1.3. Constituants	8
	1.4. Modèle thermodynamique	9
	1.5. Réactions chimiques	10
	1.6. Conditions opératoires	
	1.6.1. Simulation complète	13
	1.6.2. Simulation du réacteur de synthèse de l'ammoniac	19
	1.7. Initialisations	20
	1.7.1. Simulation complète	20
	1.7.2. Simulation du réacteur de synthèse de l'ammoniac	20
	1.8. « Trucs et astuces »	21
	1.8.1. Changer les visuels des opérations unitaires	21
	1.8.2. Utilisation des courants d'information	21
	1.8.3. Modules de bilans	21
2.	RESULTATS	22
	2.1. Performance du procédé	22
	2.2. Réacteur de synthèse de l'ammoniac	22
	2.3. Analyse pincement	23
3.	BIBLIOGRAPHIE	25
4.	ANNEXE	26


Version : Mai 2023 Page : 3 /28

1. MODELISATION DU PROCEDE

1.1. Présentation du procédé

L'ammoniac (NH₃) est le composé le moins cher associant l'azote aux matières premières, utilisé dans plus de 76% de tous les produits à base d'azote [AMH22]. Les principales catégories d'applications de l'ammoniac sont [AMH22] les productions de bicarbonate d'ammonium, de nitrate d'ammonium, de sulfate d'ammonium, de nitrate de calcium et d'ammonium, d'urée, d'engrais et autres utilisations directes.

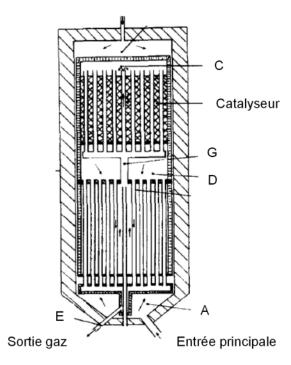
Il existe plusieurs façons de produire de l'hydrogène [AMH22], [GOD12], [PAT19], [ROU18]. Actuellement, la majeure partie de l'hydrogène industriel est produite à partir de combustibles fossiles (gaz naturel, pétrole et charbon), principalement par reformage à la vapeur du gaz naturel. Afin de diminuer les émissions de CO₂ dans l'atmosphère une attention particulière est de plus en plus accordée aux options de production renouvelables qui comprennent l'électrolyse de l'eau (cf. « PSPS_EX_FR-Production-Hydrogene-Electrolyse ») utilisant des énergies renouvelables (par exemple : éolienne, solaire, hydroélectrique et géothermique), la gazéification de la biomasse (cf. « PSPS_EX_FR-Centrale-CCGI »), les processus photoélectrochimiques et biologiques et les cycles thermochimiques à haute température. Les voies générales de production d'hydrogène par différents procédés et à partir de différentes sources d'énergie primaire sont présentées sur la figure suivante [GOD12].

L'exemple détaillé dans ce document présente la production d'ammoniac par reformage de gaz naturel [AMH12], [ROU18]. La simulation « PSPH_EX_FR-Procédé-Synthèse-Ammoniac.pmp3 » présente ce procédé de production d'ammoniac. Les échanges thermiques entre les courants procédés et la génération de la vapeur d'eau nécessaire au reformage par une représentation simplifiée de la chaudière sont également simulés. Les réseaux d'utilités et les éventuels couplages turbines – compresseurs ne sont pas simulés mais peuvent être aisément ajoutés avec ProSimPlus HNO3.

Version : Mai 2023 Page : 4 /28

Les différents blocs du procédé sont les suivants :

✓ <u>Désulfuration (« Sulfur removal »)</u>: Désulfuration finale du gaz naturel pour éliminer les dernières traces de soufre qui constitue est un poison pour les catalyseurs utilisés dans ce procédé. La désulfuration repose sur l'hydrogénation des composés soufrés en hydrocarbures et H₂S. Un réacteur simple est utilisé pour modéliser cette partie en assimilant les composés soufrés à du Tetrahydrothiophene. L'adsorption du H₂S est généralement réalisée sur des oxydes de zinc. Un séparateur de constituants permet de représenter simplement cette opération.


- ✓ Reformage primaire à la vapeur (« Primary reforming »): ce bloc permet de convertir le méthane en hydrogène, CO et CO₂. Le reformage du méthane à la vapeur est modélisé par un équilibre chimique dans un réacteur agité continu. Le reformage des autres hydrocarbures est fait dans un réacteur simple à taux de conversion fixés.
- ✓ Reformage secondaire (« Secondary reforming »): une post-combustion du méthane à l'air avec prise en compte simultanée de son reformage à l'air et la conversion du CO est réalisée dans un réacteur agité continu. Ce second bloc de reformage permet de convertir un maximum de méthane en hydrogène, CO et CO₂.
- ✓ <u>Conversion du CO (« Shift conversion »)</u>: ce bloc permet de convertir le CO en hydrogène et en CO₂ par réaction avec de l'eau. La conversion du CO est faite en deux étapes à deux températures différentes dans deux réacteurs agités continus.
- ✓ <u>Elimination de l'eau résiduelle (« Water removing »)</u> : cette étape est modélisée par un flash liquide-vapeur à température et pression données.
- ✓ <u>Décarbonatation du gaz de synthèse (« CO₂ removing »)</u> : cette étape permet d'éliminer le CO₂ du gaz issu des étapes de reformage. Ce procédé de décarbonatation est réalisé de manière simple à l'aide d'un séparateur de constituants. Des exemples dédiés à différentes méthodes de décarbonatation sont disponibles :
 - Procédé aux amines avec la MEA comme solvant, cf. « PSPS_EX_FR-Procede-capture-CO2-avecamine »;
 - o Procédé Rectisol avec le méthanol comme solvant, cf. « PSPS_EX_FR-Procede-Rectisol » ;
 - o Procédé Purisol avec la NMP comme solvant, cf. « PSPS_EX_FR-Procede-Purisol » ;
 - Procédé Selexsol avec le Selexsol comme solvant, cf. « PSPS EX FR-Procede-Selexol ».
- ✓ <u>Méthanation (« Methanation »)</u>: elle a pour but d'éliminer les traces de composés oxygénés. Dans cet exemple le CO et le CO₂ sont les composés oxygénés restant à éliminer.
- ✓ Compression du gaz (« 3 stages synthesis gas compressor ») : réalisée ici en trois étapes avec élimination des condensats.
- ✓ Boucle de synthèse de l'ammoniac (« Ammonia synthesis ») qui comporte :
 - Le réacteur catalytique de synthèse : dans la simulation principale, un réacteur simple à taux de conversion fixé est utilisé. Une simulation avec prise en compte de l'équilibre chimique et de la technologie de ce réacteur est effectuée dans la simulation « PSPH_EX_FR-Réacteur-Synthèse-Ammoniac.pmp3 »;
 - o Une série d'échangeurs où l'ammoniac produit est condensé puis séparé à l'état liquide ;

Version : Mai 2023 Page : 5 /28

Un ensemble de réfrigération à l'ammoniac qui fournit le froid nécessaire à la condensation et au refroidissement de l'ammoniac produit. Cette simulation se focalisant sur la partie procédé, cette boucle n'est pas incluse dans la simulation.

L'intégration énergétique de ce procédé est analysée via un module d'analyse pincement énergie (§ 2.3). Les performances du procédé sont analysées à l'aide d'un module de bilan électrique et d'un module de bilan généralisé.

La modélisation du réacteur de synthèse de l'ammoniac suit celle proposée par [BAD65]. Le schéma ci-dessous présente le chemin emprunté par le gaz :

✓ Section d'échange thermique :

A → G: Préchauffage du gaz entrant par refroidissement du gaz quittant le réacteur. Ceci est modélisé par le consignateur de température E201a dans lequel la température au point G est imposée.

✓ Section réactive :

G → C : Le gaz après préchauffage est utilisé pour contenir la chaleur de réaction. Ceci est modélisé en utilisant la possibilité de définir un fluide caloporteur (réacteur avec double-enveloppe) dans le réacteur tubulaire R201.

C → D: Il s'agit de la section réactive. Les dimensions du réacteur R201 ont été adaptées pour correspondre aux caractéristiques de l'écoulement considérées dans [BAD65].

✓ Section d'échange thermique :

D → E: Le gaz sortant du réacteur préchauffe l'alimentation. Le simple échangeur E201b modélise cela. Un courant d'information transfère la quantité de chaleur calculée par l'échangeur E201a.

Version : Mai 2023 Page : 6 /28

1.2. Schéma de simulation

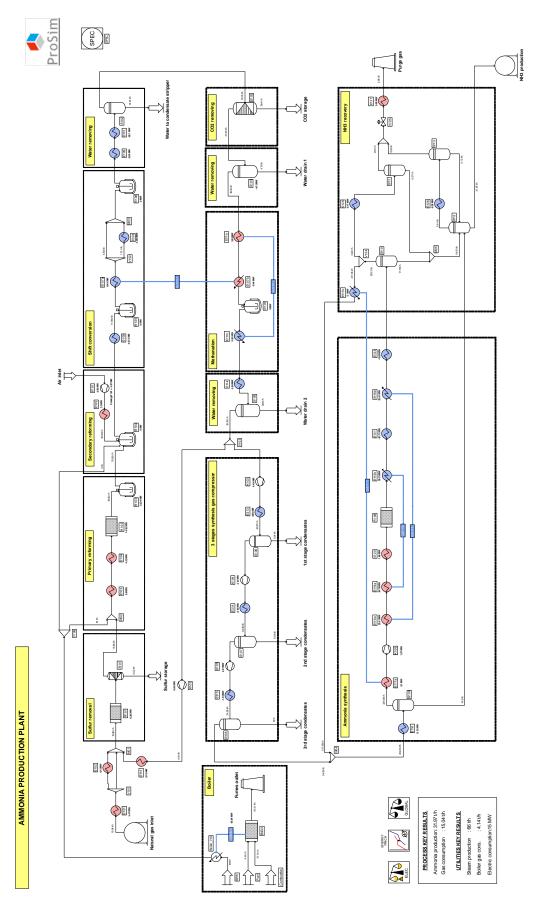


Schéma de simulation d'un procédé de synthèse de l'ammoniac à partir d'un gaz naturel

Version : Mai 2023 Page : 7 /28

AMMONIA CONVERTER

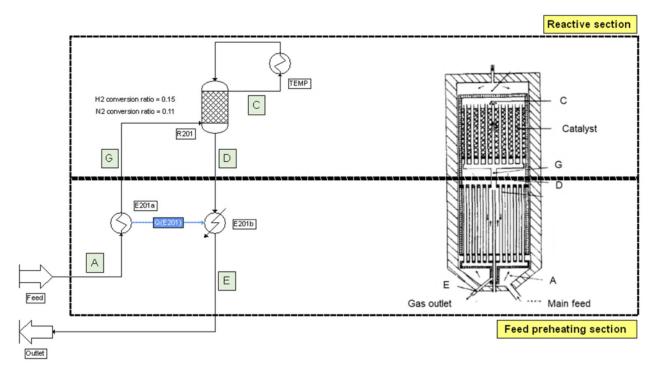


Schéma de simulation d'un réacteur de synthèse de l'ammoniac

Version : Mai 2023 Page : 8 /28

1.3. Constituants

Les constituants pris en compte dans la simulation ainsi que leurs formules chimiques et leurs numéros CAS¹ sont présentés dans le tableau ci-après. Les propriétés de corps purs sont extraites de la base de données standard des logiciels ProSim [WIL21].

Constituant	Formule chimique	Numéro CAS (1)
Water	H_2O	7732-18-5
Oxygen	0_2	7782-44-7
Hydrogen	H_2	1333-74-0
Carbon monoxide	СО	630-08-0
Carbon dioxide	CO_2	134-38-9
Nitrogen	N_2	7727-37-9
Argon	Ar	7440-37-1
Methane	CH ₄	74-82-8
Ethane	C_2H_6	74-84-0
Propane	C_3H_8	74-98-6
Isobutane	C_4H_{10}	75-28-5
n-butane	C ₄ H ₁₀	106-97-8
Isopentane	C ₅ H ₁₂	78-78-4
Pentane	C_5H_{12}	109-66-0
n-hexane	C_6H_{14}	110-54-3
Ammonia	NH ₃	7664-41-7
Tetrahydrothiophene	C ₄ H ₈ S	110-01-0
Hydrogen sulfide	H ₂ S	7783-06-4

¹ CAS Registry Numbers® are the intellectual property of the American Chemical Society and are used by ProSim SA with the express permission of ACS. CAS Registry Numbers® have not been verified by ACS and may be inaccurate.

Version : Mai 2023 Page : 9 /28

1.4. Modèle thermodynamique

Le profil thermodynamique retenu est SRK. Les paramètres d'interaction binaire sont ceux de la base de données fournie avec Simulis Thermodynamics.

Version : Mai 2023 Page : 10 /28

1.5. Réactions chimiques

Toutes les réactions ont lieu en phase vapeur. Les chaleurs de réaction sont calculées à partir des enthalpies standard de formation (1 atm, 25°C, gaz parfait).

✓ La réaction de désulfuration considérée dans cette simulation est :

$$C_4H_8S + H_2 \to H_2S + C_4H_{10}$$
 (1)

Cette réaction est supposée instantanée, son taux de conversation est fixé directement dans le réacteur correspondant.

✓ La réaction de reformage à la vapeur du méthane est :

$$CH_4 + H_2O \leftrightarrow CO + 3H_2 \tag{2}$$

La constante d'équilibre est :

$$Ln(K_{eq}) = 29,3014 - \frac{26248,4}{T}$$

✓ Les autres réactions de reformage à la vapeur sont :

$$C_2H_6 + 2H_2O \rightarrow 2CO + 5H_2$$
 (3)

$$C_3H_8 + 3H_2O \rightarrow 3CO + 7H_2$$
 (4)

$$C_4H_{10(iso)} + 4H_2O \rightarrow 4CO + 9H_2$$
 (5)

$$C_4 H_{10(normal)} + 4H_2O \rightarrow 4CO + 9H_2$$
 (6)

$$C_5H_{12(iso)} + 5H_2O \rightarrow 5CO + 11H_2$$
 (7)

$$C_5H_{12(normal)} + 5H_2O \rightarrow 5CO + 11H_2$$
 (8)

$$C_6H_{14} + 6H_2O \rightarrow 6CO + 13H_2$$
 (9)

Ces réactions sont supposées instantanées, leurs taux de conversion sont fixés directement dans les réacteurs correspondants.

✓ La réaction « water gas shift » est :

$$CO + H_2O \leftrightarrow CO_2 + H_2 \tag{10}$$

La constante d'équilibre est :

$$Ln(K_{eq}) = -4,35369 + \frac{4593,16}{T}$$

Version : Mai 2023 Page : 11 /28

La réaction prise en compte pour le reformage secondaire du méthane est :

$$CH_4 + O_2 \leftrightarrow CO_2 + 2H_2O \tag{11}$$

La constante d'équilibre est :

$$Ln(K_{eq}) = 40$$

✓ Les réactions de méthanation sont :

$$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$$
 (12)

La constante d'équilibre est :

$$Ln(K_{eq}) = -24,94771 + \frac{21655,25}{T}$$

$$CO + 3H_2 \leftrightarrow CH_4 + H_2O \tag{13}$$

La constante d'équilibre est :

$$Ln(K_{eq}) = -29,3014 + \frac{26248,4}{T}$$

- ✓ La synthèse de l'ammoniac :
 - En première approche (« PSPH_EX_FR-Procédé-Synthèse-Ammoniac.pmp3 »), la réaction de synthèse considérée est :

$$N_2 + 3H_2 \rightarrow 2NH_3 \tag{14}$$

Cette réaction est supposée instantanée, son taux de conversation est fixé directement dans le réacteur correspondant.

En approche détaillée, pour la simulation spécifique du réacteur de synthèse de l'ammoniac (« PSPH_EX_FR-Réacteur-Synthèse-Ammoniac.pmp3 »), le modèle proposé par Temkin-Pyzhev [MUR70] est retenu. Il suppose les deux réactions suivantes :

$$N_2 + 3H_2 \to 2NH_3$$
 (15)

$$2NH_3 \to N_2 + 3H_2 \tag{16}$$

La vitesse de réaction est alors :

$$r = 17895,4 exp\left(\frac{-20800}{RT}\right)\frac{P_{N_2}P_{H_2}^{1.5}}{P_{NH_3}} - 2,5714.10^{16}exp\left(\frac{-47400}{RT}\right)\frac{P_{NH_3}}{P_{H_2}^{1.5}}$$

Unité énergie d'activation : kcal/kmol

Unité de temps : h

Unité de pression : atm

Version : Mai 2023 Page : 12 /28

✓ Les réactions de combustion considérées dans la chaudière sont :

$$CH_4 + 2O_2 \to CO_2 + 2H_2O$$
 (17)

$$C_2H_6 + 3.5O_2 \rightarrow 2CO_2 + 3H_2O$$
 (18)

Ces réactions sont supposées instantanées, leurs taux de conversion sont fixés directement dans le réacteur correspondant.

Le tableau suivant détaille les jeux de réactions créés afin de définir les réactions utilisées pour chaque réacteur.

Jeux de réactions	Réactions
Desulfurization	(1)
Primary reforming (part 1)	(3), (4), (5), (6), (7), (8), (9)
Primary reforming (part 2)	(2)
Secondary reforming	(2), (10), (11)
CO conversion	(10)
Methanation	(12), (13)
Ammonia synthesis (simplified)	(14)
Ammonia synthesis (detailed)	(15), (16)
Combustion	(17), (18)

Version : Mai 2023 Page : 13 /28

1.6. Conditions opératoires

1.6.1. Simulation complète

✓ Alimentations

	Natural gas inlet	Air inlet	BFW	Fuel	Combustive			
Fraction massique								
Water		0,00994	1					
Oxygen		0,20732			0,23464			
Carbon dioxide	0,019724	0,00039						
Nitrogen	0,038600	0,77314			0,76535			
Argon		0,00921						
Methane	0,867090			0,98				
Ethane	0,051740			0,02				
Propane	0,012590							
Isobutane	0,001537							
n-butane	0,002357							
Isopentane	0,000537							
n-pentane	0,000549							
n-hexane	0,001274							
Tetrahydrothiophene	0,004002							
Débit	15 042,6 kg/h	28 001,4 Nm ³ /h	66 000 kg/h	4 139,2 kg/h	77169,8 kg/h			
Température (°C)	6	8	25	25	25			
Pression (bar)	45	1,01325	36	1,01325	1,01325			

√ Réacteurs simples

	Température (°C)	Jeu de réactions	Taux de conversion	
R101	304,6	Desulfurization	Tetrahydrothiophene	1
R102	755	Primary reforming (part 1)	Ethane Propane Isobutane n-butane Isopentane n-pentane n-hexane	1 1 1 1 1
R108	Adiabatique	Ammonia synthesis (simplified)	Nitrogen	0,15
Boiler	90	Combustion	Methane Ethane	1

Version : Mai 2023 Page : 14 /28

✓ Réacteurs agités continus

	Température	Pertes de charge (bar)	Jeu de réactions	Température d'approche (°C)	Phase
R103	755°C	0,5	Primary reforming (part 1)	67	Vapeur
R104	Adiabatique	1,6	Secondary reforming	37	Vapeur
R105	Adiabatique	0,35	CO conversion	0	Vapeur
R106	Adiabatique	0,5	CO conversion	0	Vapeur
R107	Adiabatique	0	Methanation	0	Vapeur

✓ Séparateurs diphasiques liquide-vapeur

	Type de flash	Spécification		
S104	Température et	62°C		
3104	pression données	25,2 bar		
S102		26 bar		
3102		Adiabatique		
S105		24,9 bar		
3103		Adiabatique		
S106				
S107	Pression et quantité de			
S108		Pression la plus faible des alimentations		
S109	chaleur données	Adiabatique		
S110				
S111				
S112		25 bar		
3112		Adiabatique		
S113		Pression la plus faible des alimentations		
31.10		Adiabatique		

Version : Mai 2023 Page : 15 /28

✓ Consignateurs de température

	Température (°C)	Perte de charge (bar)	
E101	314	8,9	
E102	325	2	
E103	480	0	
E104	560	0	
E105	505	0	
E106	345	0	
E107a	407,232	0	
E108	203	0	
E109	194	0	
E110	110	0	
E111a	235,721	0	
E114	17,7	0	
E115	300	0	
E116	-9,4	0	
E117a	17	0	
E118a	157	0	
E119a	369	0	
E120	379	0	
E121	199,7	0	
E123	18	0	
E125	-21,5	0	
E126	-21	0	
E127	11	0	
E313	28	0	
E314	20	0	
E315	31,2	0	

Pour les utilités ne changeant pas de phase les échangeurs suivants sont définis :

	Utilité	Туре	Efficacité	T _{entrée} (°C)	T _{sortie} (°C)	P _{entrée} (bar)
E114				15,1	22	4
E121	Water	Contre-courant	0,8	100	268	96,6
E123				15,1	22	5

Version : Mai 2023 Page : 16 /28

✓ Echangeurs simples

Il est possible de « coupler » un module « Consignateur de température » à un module « Echangeur simple » via un courant d'information. Le courant d'information permet de transférer la quantité de chaleur calculée par le module « Consignateur de température » (*i.e.* à température de sortie fixée) au module « Echangeur simple ». Le module « Echangeur simple » calcule ensuite la température de sortie du courant à partir de cette valeur. Cette modélisation permet de diminuer le nombre de recirculations dans la modélisation d'un procédé diminuant d'autant le temps calcul et la complexité de la résolution. L'association d'un « Consignateur de température » et d'un « Echangeur simple » (par courant d'information) est équivalent à l'utilisation d'un « Echangeur généralisé » (cf. 1.8.2 Utilisation des courants d'information).

	Quantité de chaleur
E107b	Valeur reçue par courant d'information du consignateur de température E107a Valeur initiale : 0 kcal/h
E111b	Valeur reçue par courant d'information du consignateur de température E111a Valeur initiale : 9 800 000 kcal/h
E117b	Valeur reçue par courant d'information du consignateur de température E117a Valeur initiale : 5 240 000 kcal/h
E118b	Valeur reçue par courant d'information du consignateur de température E118a Valeur initiale : 12 490 000 kcal/h
Valeur reçue par courant d'information du consignateur de tempéra Valeur initiale : 15 000 000 kcal/h	
Boiler_HX	Valeur reçue par courant d'information du réacteur simple Boiler Valeur initiale : 0 kcal/h

Version : Mai 2023 Page : 17 /28

✓ Compresseurs généralisés

Les paramètres du compresseur d'air K101 sont :

Type : IsentropiquePression de refoulement : 30,2 bar

o Efficacités : Isentropique 0,95

Mécanique 0,95 Electrique 0,98

o Nombre d'étages : 3

Même rapport de compression entre les étages

Température de sortie des refroidisseurs intermédiaires supérieure de

10°C par rapport à la température de rosée

Les autres compresseurs, présentés dans le tableau ci-dessous, sont des compresseurs polytropiques avec une efficacité mécanique de 0,95 et une efficacité électrique de 0,98.

	Pression de refoulement (bar)	Efficacité polytropique
K102	69	0,90
K103	65	0,76
K104	119	0,69
K105	170	0,59
K106	180	0,90

✓ Mélangeurs de courants

	Pression de sortie (bar)
M01, M03, M04, M05, M06	Egale à la plus faible des alimentations
M02	31,3

✓ Diviseurs de courants

	Courant spécifié	Vers	Type de spécification	Spécification
V101	C9	M01	Taux de partage 0,97	0
V102	C24	E108		0,961234
V103	C44	K103		0,977253
V104	C76	E125		0,0129
V106	C5	M02	Débit massique	61 t/h

✓ Vanne de détente

	Type de contrainte	Spécification
V105	Spécification de la pression	7,4 bar

Version : Mai 2023 Page : 18 /28

✓ Séparateurs de constituants

	Température	Constituants	Taux de récupération
S101	294°C	Tetrahydrothiophene Hydrogen sulfide	0
S103	Egale à la température du premier courant entrant	Tous les autres constituants Carbon dioxide Tous les autres constituants	0,00199714 1

✓ Gestion des contraintes et des recyclages (« SPEC »)

Un module de gestion des contraintes et recyclages est ajouté à la simulation afin d'augmenter le nombre maximal d'itérations de 20 (valeur par défaut) à 50.

✓ Analyse pincement énergie (« Energy Pinch Analysis »)

Seuls les courants dits « Procédé » sont pris en compte pour une analyse pincement. (cf. 4 Annexe). Les courants dits « Utilité » sont donc exclus de l'analyse. Ainsi, les courants C92 (alimentation en « BFW »), C95 (alimentation en « Fuel ») et C96 (alimentation en « Combustive ») sont définis comme « intégré » afin d'exclure les courants constitutifs de la modélisation de la chaudière. Tous les autres paramètres du module sont ceux par défaut, notamment le pincement de 10°C. L'impression des potentiels d'intégration est activée dans les options avancées du module.

✓ Bilan électrique (« Electrical balance »)

Tous les paramètres sont ceux par défaut.

✓ Bilan généralisé (« Generalized balance »)

Tous les paramètres sont ceux par défaut.

Version : Mai 2023 Page : 19 /28

1.6.2. Simulation du réacteur de synthèse de l'ammoniac

✓ Alimentation

Débits molaires partiels (kmol/h)		
Ammonia	771	
Hydrogen	12 962	
Nitrogen	6 179	
Argon	238	
Methane	865	
Température (°C)	157	
Pression (bar)	180	

✓ Réacteur tubulaire

Les paramètres du réacteur R201 sont :

o Jeu de réaction : Ammonia synthesis (detailed)

Mode de fonctionnement : Fluide caloporteur (température calculée)

Sens de circulation du caloporteur : Contre-courant
Conductivité thermique de la paroi : 16,3 W/m/K

Diamètre du tube contenant le fluide caloporteur
 Etat physique
 Longueur du réacteur
 Diamètre externe des tubes
 Diamètre interne des tubes
 Rugosité
 Inclinaison
 2,7 m
 2,345 m
 10-6 m
 Horizontal

Nombre de tubesNombre de pas de maillage pour l'impression25

✓ Consignateurs de température

	Température (°C)	Perte de charge (bar)
E201a	369	0
TEMP	Egale à la température du courant d'entrée	0

Afin de connecter le courant sortant de la double-enveloppe du réacteur R201 à l'entrée du fluide réactif de ce même réacteur, il est nécessaire dans ProSimPlus HNO3 d'intercaler une opération unitaire. En effet, il n'est pas possible de connecter une opération unitaire à elle-même dans ProSimPlus HNO3. Le rôle du consignateur de température « TEMP » est donc de pouvoir réaliser cette connexion. Pour cette raison, il n'a aucun rôle thermique.

Version : Mai 2023 Page : 20 /28

✓ Echangeur simple

La mise en œuvre de cet échangeur est la même que celle décrite dans la partie équivalente du paragraphe 1.6.1.

		Quantité de chaleur		
E107b	Valeur reçue par courant d'information du consignateur de température E201a			
	Valeur initiale : 0 kcal/h			

1.7. <u>Initialisations</u>

La séquence de calcul est automatiquement déterminée par ProSimPlus HNO3.

1.7.1. Simulation complète

Trois courants coupés sont détectés dans la simulation complète :

✓ C47 : Courant sortant de l'échangeur E115

✓ C78 : Courant sortant de l'échangeur E117b

✓ C88 : Courant liquide sortant du séparateur diphasique liquide-vapeur (flash) S113

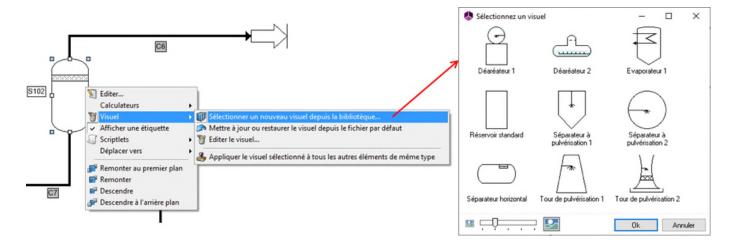
Ces courants coupés ne sont pas initialisés. L'initialisation de ces courants peut permettre de réduire le temps de calcul mais elle n'est pas nécessaire dans ce cas précis pour atteindre la convergence.

1.7.2. Simulation du réacteur de synthèse de l'ammoniac

Un courant coupé est détecté pour la simulation du réacteur seul :

✓ C104 : Courant entrant dans le réacteur R201

L'initialisation choisie est la suivante (les débits molaires partiels et la pression sont identiques à l'alimentation, seule la température est différente) :


Débits molaires partiels (kmol/h)		
Ammonia	771	
Hydrogen	12 962	
Nitrogen	6 179	
Argon	238	
Methane	865	
Température (°C)	370	
Pression (bar)	180	

Version : Mai 2023 Page : 21 /28

1.8. « Trucs et astuces »

1.8.1. Changer les visuels des opérations unitaires

Il est possible de changer les visuels des opérations unitaires afin de les adapter aux équipements du procédé simulé. Pour cela, il faut utiliser le sous-menu « Visuel » du menu contextuel de l'opération unitaire. Dans le fichier de simulation associé à ce document, les visuels de l'alimentation en gaz naturel, des « Fumes outlet », « Purge gas » et « NH3 production » ainsi que des échangeurs de chaleur ont été modifiés et sélectionnés dans la base de données des visuels.

1.8.2. Utilisation des courants d'information

L'utilisation d'un courant d'information pour « coupler » un consignateur de température et un module simple échangeur permet de représenter un échangeur à 2 fluides. L'association d'un « Consignateur de température » et d'un « Echangeur simple » (par courant d'information) est équivalent à l'utilisation d'un « Echangeur généralisé ». Cette technique de modélisation pour les échangeurs d'intégration (c'est-à-dire les échangeurs entre deux courants procédés) permet d'éviter la création de boucle de recirculation.

1.8.3. Modules de bilans

Les modules de bilans (bilan électrique, bilan eau, bilan utilités, bilan généralisé) permettent de réaliser rapidement des bilans sur le procédé. Dans cet exemple le module bilan électrique est utilisé pour obtenir la consommation électrique du procédé. Le module bilan généralisé permet dans cette simulation d'avoir le bilan matière complet.

Version : Mai 2023 Page : 22 /28

2. RESULTATS

2.1. Performance du procédé

Le tableau suivant présente les résultats clés côté procédé :

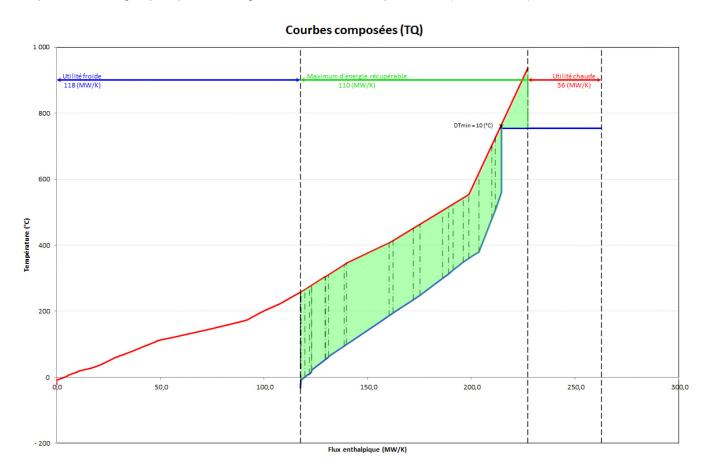
Consommation en gaz naturel (t/h)	15,04
Production d'ammoniac (t/h)	31,97
Pureté de l'ammoniac produit (% massique)	99,12

Le tableau suivant présente les résultats clés côté utilité :

Production de vapeur (t/h)	66
Consommation gaz de la chaudière (t/h)	4,14
Consommation électrique (MW)	15

2.2. Réacteur de synthèse de l'ammoniac

La simulation du réacteur de synthèse de l'ammoniac calcule un taux de conversion de l'hydrogène de 15% et de l'azote de 11%. Cette valeur est à comparer à la valeur de 15% spécifiée comme taux de conversion de l'azote dans la simulation complète (§ 1.6.1).


Il est possible d'intégrer la simulation du réacteur de synthèse de l'ammoniac dans la simulation du procédé complet afin de représenter plus finement la synthèse de l'ammoniac.

<u>Note</u>: Il est à noter que le « copier-coller » est tout à fait possible entre les deux simulations afin de réutiliser directement le flowsheet de « PSPH_EX_FR-Réacteur-Synthèse-Ammoniac.pmp3 » dans le fichier « PSPH_EX_FR- Procédé-Synthèse-Ammoniac.pmp3 ».

Version : Mai 2023 Page : 23 /28

2.3. Analyse pincement

Les courbes composées chaudes et froides présentées dans le graphique ci-dessous permettent d'identifier les récupérations énergétiques pertinentes grâce à la méthode du pincement (cf. 4 Annexe).

La zone de recouvrement entre les deux courbes (zone en vert) indique la quantité d'énergie qu'il va être possible d'économiser en privilégiant les récupérations énergétiques internes, c'est à dire en associant de la manière la plus judicieuse possible les courants « sources d'énergie » (courants chauds) avec les courants « puits d'énergie » (courants froids). Cette zone de recouvrement est appelée le « MER » pour Maximum d'Energie Récupérable. A gauche, l'écart entre les deux courbes montre la quantité d'énergie minimale en utilité froide nécessaire pour le procédé si 100% du MER est récupéré par un réseau d'échangeurs efficient. A droite, l'écart entre les deux courbes montre la quantité d'énergie minimale en utilité chaude nécessaire pour le procédé si 100% du MER est récupéré par un réseau d'échangeurs efficient.

Quantité maximale de chaleur récupérable (MW)	110
Quantité minimale d'utilité froide (MW)	118
Quantité minimale d'utilité chaude (MW)	36

Version : Mai 2023 Page : 24 /28

En cochant la case « Impression des potentiels d'intégration » dans l'onglet « Options avancées » du module « Energy Pinch Analysis », il est possible de connaître les quantités d'énergie actuellement nécessaires pour les utilités froide et chaude du procédé simulé. Ici, \approx 151 MW sont actuellement fournis par les utilités froides (les quantités de chaleur récupérées couvrent \approx 34% des besoins) et \approx 68 MW par les utilités chaudes (les quantités de chaleur récupérées \approx 53% des besoins, \approx 77 MW récupérés par des échangeurs d'intégration). Le taux d'intégration actuel atteint \approx 70%. L'intégration thermique du procédé est donc intéressante mais des économies d'énergie sont encore réalisables.

	QUA	QUANTITE D'UTILITE (MW)		TANK DE CATTERACTION (%)
	MINIMALE	ACTUELLE	MAXIMALE	TAUX DE SATISFACTION (%)
UTILITE FROIDE	117.687	150.590	227.209	33.722
UTILITE CHAUDE	35.5664	68.4688	145.088	52.809

Quantité maximale de chaleur récupérable	=	109.522	(MW)
Température de pincement	=	759.990	(°C)
Taux d'intégration réel	=	69.958	(%)
Indicateur du potentiel d'intégration n°1	=	58.836	(%)
Indicateur du potentiel d'intégration n°2	=	41.679	(%)

RESEAU ACTUEL DES ECHANGEURS D'INTEGRATION

NOM DE L'ECHANGEUR	Q (MW)
E107b - E107a	0.440599
E111b - E111a	5.91717
E119b - E119a	39.7584
E118b - E118a	25.4059
E117b - E117a	5.09740
TOTAL	76.6195

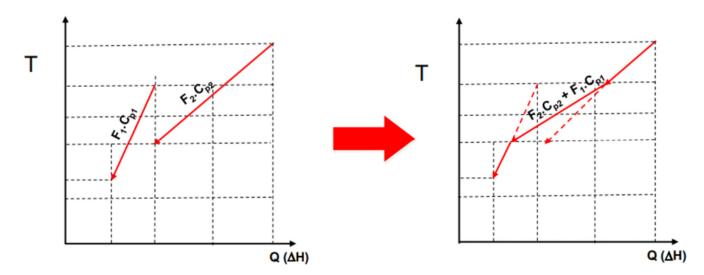
Version: Mai 2023 Page: 25 /28

3. BIBLIOGRAPHIE

- [AMH22] AMHAMED A.I., QARNAIN S.S., HEWLETT S., SODIQ A., ABDELLATIF Y., ISAIFAN R.J., ALREBEI O.F., "Ammonia Production Plants A Review", Fuels, 3, 408-435 (2022).
- [BAD65] BADDOUR R.F., BRIAN P.L.T., LOGEAIS B.A., EYMERY J.P., "Steady-State Simulation of an Ammonia Synthesis Converter", Chem. Eng. Sci., 20, 281-292 (1965).
- [CAN03] RESSOURCES NATURELLE DU CANADA, "L'analyse Pinch: pour l'utilisation efficace de l'énergie, de l'eau, de l'hydrogène" (2003).
- [GOD12] GODULA-JOPEK A., JEHLE W., WELLNITZ J., "Hydrogen Storage Technologies", Wiley-VCH (2012).
- [KAI99] KAISER V., FILIPPI E., LEGER H.D., LESUR P., "Calcul des réacteurs catalytiques. Synthèse d'ammoniac", Techniques de l'Ingénieur, J4040 (1999).
- [MUR70] MURASE A., ROBERTS H.L., CONVERSE A.O., "Optimal Thermal Design of an Autothermal Ammonia Synthesis Reactor", Ind. End. Chem. Process Des. Develop., 9, 503-513 (1970).
- [PAT19] PATTABATHULA V., "Ammonia", Kirk-Othmer Encyclopedia of Chemical Technology (2019).
- [ROU18] ROUWANE A., "Ammoniac", Techniques de l'Ingénieur, J6135 (2018).

Version : Mai 2023 Page : 26 /28

4. Annexe


L'analyse pincement, ou analyse Pinch, est une méthode rigoureuse et structurée permettant d'optimiser les dépenses énergétiques d'un procédé.

La principale caractéristique de l'analyse Pinch est de permettre de déterminer, pour un procédé ou une usine donnée, la consommation minimale en énergie, en eau et en hydrogène nécessaire à son fonctionnement. Il est donc possible d'évaluer le potentiel maximum d'amélioration et ceci, avant même de débuter des travaux de conception détaillée. L'approche peut être appliquée de manière systématique au niveau de chacun des procédés de l'usine ou de manière globale pour l'ensemble du site.

Les économies typiques identifiées dans le cadre d'une analyse Pinch dans des secteurs industriels tels que le raffinage de pétrole, la chimie, la sidérurgie, les pâtes et papiers, la pétrochimie et l'agroalimentaire sont de l'ordre de 10 à 35% [CAN03].

La première étape de la méthode du pincement est de construire les courbes composées (aussi appelées courbes composites). Pour construire ces courbes, il faut connaître les valeurs des débits des courants F, leur capacité calorifique \mathcal{C}_p , et les températures d'entrée et de sortie (ΔT) pour chaque chauffe et refroidissement du procédé. Les courbes composées représentent le profil des sources de chaleur disponibles (« courbe composite chaude ») et le profil des besoins thermiques du procédé (« courbe composite froide »). Selon leur forme et leur emplacement, ces courbes renseignent sur les possibilités de récupération de chaleur au sein du procédé.

La figure suivante montre la construction de la courbe composée chaude sur un diagramme Température-Quantité de chaleur échangée. La courbe composite chaude est construite tout simplement en ajoutant, pour chaque intervalle de température, les changements de charge thermique de chacun des courants pris individuellement.

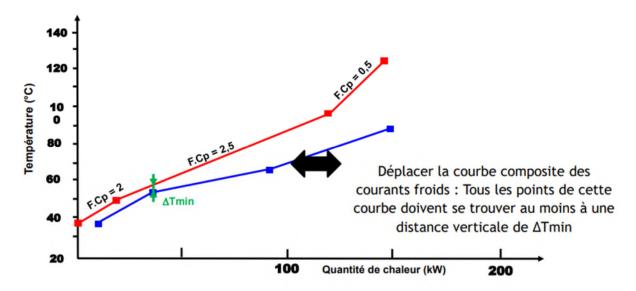
Version : Mai 2023 Page : 27 /28

La construction est fondée sur la relation :

 $Q = FC_{p}\Delta T$

Avec:

Q : Quantité de chaleur échangée (W)

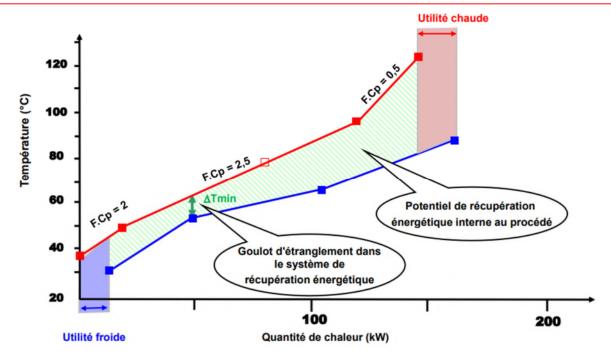

F : Débit massique du courant chauffé ou refroidi (kg/s)

 C_p : Chaleur spécifique du courant (J/kg/°C)

ΔT : Ecart de température entre l'entée et la sortie de la chauffe ou du refroidissement (°C)

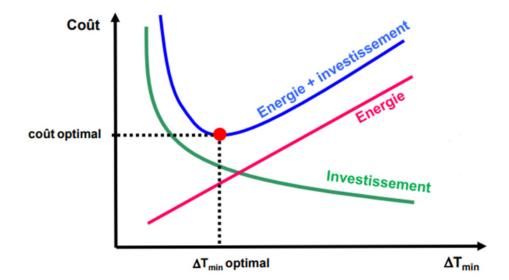
La courbe composée froide est obtenue de la même façon.

Pour établir la cible de consommation minimale d'énergie du procédé étudié, la courbe composite froide est positionnée sur le même diagramme que celui de la courbe composite chaude.



Les 2 courbes sont translatées horizontalement jusqu'à obtenir un écart entre les 2 courbes. La courbe composée chaude doit être au-dessus de la courbe composée froide (pour que l'un échange de chaleur soit possible). L'écart le plus faible entre les deux courbes (lieu où elles sont le plus rapprochées) représente la différence de température ΔT_{min} aussi appelé le pincement. Cette valeur indique la différence de température minimale qui est acceptable entre les deux fluides dans un échangeur de chaleur. Ce pincement varie en fonction des procédés et des technologies d'échangeurs utilisés sur chaque procédé (de 10 à 20°C pour la pétrochimie, de 3 à 5°C pour la cryogénie...).

La zone de recouvrement des deux courbes représente le Maximum d'Energie Récupérable (MER). Les zones à l'extérieur de la zone de recouvrement représentent les quantités d'énergie devant être apportées par les utilités.


L'analyse Pinch permet donc d'établir les cibles de consommation minimale d'énergie nécessaire pour satisfaire les besoins d'un procédé, et ce, avant même de commencer la conception du réseau d'échangeurs de chaleur. Cela permet d'identifier rapidement l'ampleur des économies d'énergie qui peuvent être envisagées à un stade préliminaire de l'analyse. Cet avantage est probablement le plus intéressant qu'offre l'analyse Pinch.

Version : Mai 2023 Page : 28 /28

Lorsque les deux courbes composées s'éloignent, le pincement augmente, et donc les écarts de température entre les courants chauds et les courants froids augmentent. Il devient alors possible de réduire les surfaces d'échange de des échangeurs pour la récupération du MER et donc de réduire le coût des échangeurs de chaleur (investissement). A l'inverse, plus le pincement est important et moins le MER (zone de recouvrement) est important. Le procédé consomme alors plus d'utilités chaude et froide et le coût en énergie augmente.

La figure suivante montre qu'il existe une valeur optimale du pincement, qui minimise le coût total, en prenant en compte les dépenses liées aux installations et celles liées à l'énergie [CAN03].

