HTRI heat-exchanger (Xace) within ProSimPlus®

Use Case 5: Use of HTRI air cooler heat-exchanger (Xace) within ProSimPlus

Software & Services In Process Simulation

We guide You to efficiency

Introduction

ProSimPlus® is a process engineering software that performs rigorous mass and energy balance calculations for a wide range of industrial steady-state processes. It is used in design as well as in operation of existing plants for process optimization, units troubleshooting or debottlenecking, plants revamping or performing front-end engineering analysis.

This document gives an example of use of HTRI (Heat Transfer Research, Inc.) air cooler heat-exchanger (Xace) within ProSimPlus®.

Note: as a prerequisite for a better understanding of this document, the user should know the general use of ProSimPlus®.

STEP #1: Select your compounds

Select your compounds like for any usual case:

STEP #2: Select your thermodynamic model

Select your thermodynamic model like for any usual case:

Like for any usual case, add the feed and the product stream needed for your flowsheet, then edit the parameters (temperature, pressure, partial flowrates) for the feed:

To add a Xace heat-exchanger (air cooler), click on the category "User defined operations" in the "Library" of unit operations:

Then click on "CAPE-OPEN unit operation", then click on the flowsheet to add it:

The list of CAPE-OPEN unit operations available on your computer is displayed, select "XaceAirCooler" and then click on the button "Select" to validate your choice:

STEP #3: Create your flowsheet

The Xace heat-exchanger icon is added:

Edit the parameters with a double-click on the selected unit operation:

STEP #3: Create your flowsheet

Select the "Parameters" tab:

STEP #3: Create your flowsheet

Then click on the "Edit..." button to open the specific dialog of a Xace heat-exchanger:

STEP #3: Create your flowsheet

Then enter the parameters of the heat-exchanger (see HTRI user guides):

STEP #3: Create your flowsheet

Or import data from an existing Xace case:

STEP #3: Create your flowsheet

Data for the heat-exchanger (summary)

STEP #3: Create your flowsheet

Like for any usual case, connect your material streams between unit operations:

When the input data is complete, click on the icon to run the simulation:

When the simulation is complete, you can edit the reports of the Xace heat-exchanger with a double-click on the corresponding icon:

STEP #5: Analyze the results

Analyze the reports of your heat-exchanger (see HTRI user guides):

Results (output summary)

2023 ProSim S.A. All rights reserve

STEP #5: Analyze the results

Material streams

lame:	Xace								
Desc:									
dentification Parameters Report			Scripts	Report	Streams	Notes	Advanced parameters		
	Add	Dele	te		Сору				
Property			No 1		No 2				
Temperature (K)			3.16	322.0	322.05				
Pressure (atm)			.0024	32.73	32.7354				
Molar flowrate (kmoVh)		35	6.241	356.2	356.241				
Mass flowrate (kg/h)			15	5715	5715				
Volume flowrate (m3/h)			5.002	276.5	276.595				
Enthalpy flux (kcal/h)			2148	3285	32858.1				
Solid fraction (mol)				0	0				
Liquid fraction (mol)		0		0	0				
Vapor fraction (mol)		1		1.	1				
Partial r	molar flowrates (ki	mol/h)							
METHANE		35	6.241	356.2	356.241				
Partial r	mass flowrates (k	g/h)							
METHANE		57	15	5715	5715				
Mole fr	actions								
METHANE		1		1	1				
Mass f	ractions								
METHANE		1		1	1				

ProSim SA
51, rue Ampère
Immeuble Stratège A
F-31670 Labège
France

2: +33 (0) 5 62 88 24 30

www.prosim.net info@prosim.net

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 U.S.A.

2: +1 215 600 3759