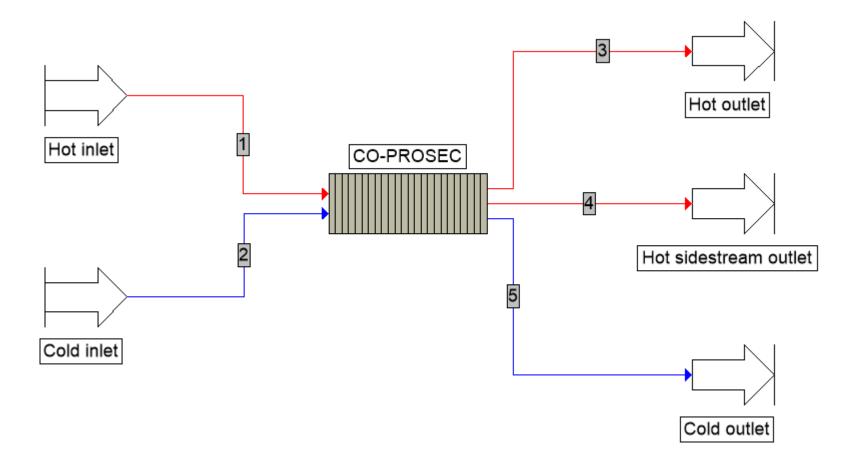
Getting started with ProSec in ProSimPlus environment


Use Case 3: Use of tabulated thermodynamic data provided by the user

Introduction

- This document shows how to provide tabulated thermodynamic data instead using the once automatically tabulated using the thermodynamic server of the host software.
- Tags will be used to display the results calculated by ProSec and those of the material stream of the host software.
- In this document, ProSec is used in ProSimPlus, Fives ProSim's steady state simulation software.
- This step-by-step guide assumes that the concepts described in the step-by-step guides of ProSec in ProSimPlus environment "Main features overview" and "Import/export parameters/results, use case study capability, define a specification" have been acquired.

 Simulation obtained at the end of the step-by-step "Main features overview" of ProSec in ProSimPlus environment

Step 1 Generation of the tabulated thermodynamic data

- Data tabulated by the user for the enthalpy curves and the physico-chemical properties
 - In this case, the thermodynamic calculation server of the host software will not be used in ProSec calculations.

The way of description of the user tabulated data should be coherent with:

- The type of the inlet fluid (mixture or pure compound)
- The physical state of the fluid during the heat exchange (single-phase liquid, single-phase vapor or two-phase vapor-liquid)
- Up to 160 tabulated points
- The format of the data depends on:
 - The fluid type (mixture or pure compound)
 - The physical state of the fluid (single-phase liquid, single-phase vapor or two-phase vapor-liquid)
 - Whether or not to take pressure into account on enthalpy curves

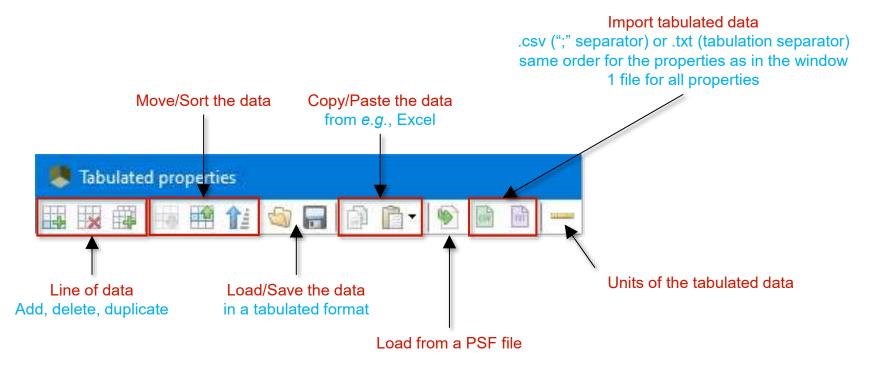
Generation of the tabulated thermodynamic data

Pressure effect not taken into account on the enthalpy curves

Data needed

Step 1

	Single	phase	Two phases		
Property	Liquid	Vapor	Mixture	Pure fluid	
Temperature	\checkmark	✓	\checkmark	✓	
Mass enthalpy	✓	✓	✓	✓	
Mass vaporization ratio	×	×	✓	✓	
Liquid density	✓	×	✓	✓	
Liquid mass specific heat	✓	×	✓	✓	
Liquid dynamic viscosity	✓	×	✓	✓	
Liquid thermal conductivity	✓	×	✓	✓	
Vapor density	×	✓	✓	✓	
Vapor mass specific heat	×	✓	✓	✓	
Vapor dynamic viscosity	×	✓	✓	✓	
Vapor thermal conductivity	×	✓	✓	✓	

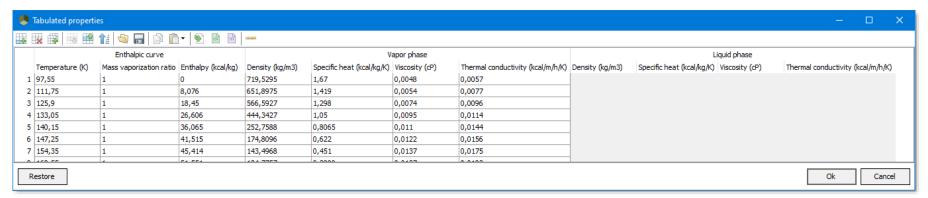

Definitions:

- Single-phase fluid is a fluid without phase change
- Pure fluid is a fluid with phase change containing only one compound,

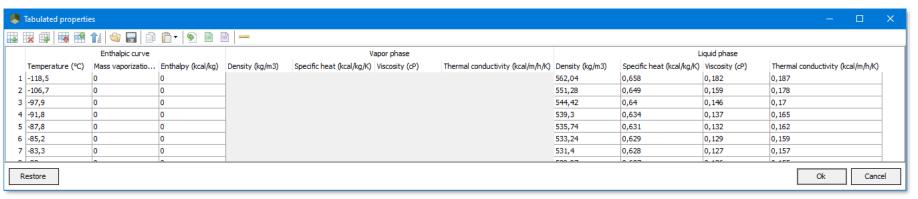
i.e.
$$T_{\text{bubble}} = T_{\text{dew}}$$

Step 1 Generation of the tabulated thermodynamic data

- Pressure effect not taken into account on the enthalpy curves
 - Toolbar

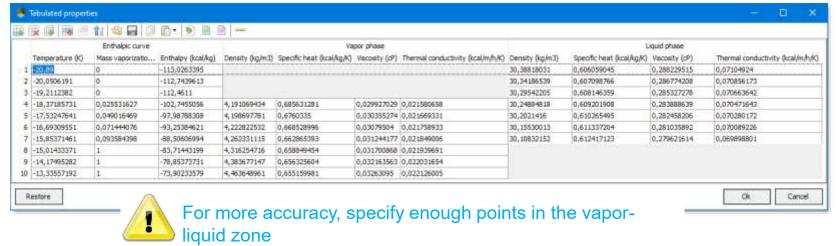


Order of the columns (window or imported file)

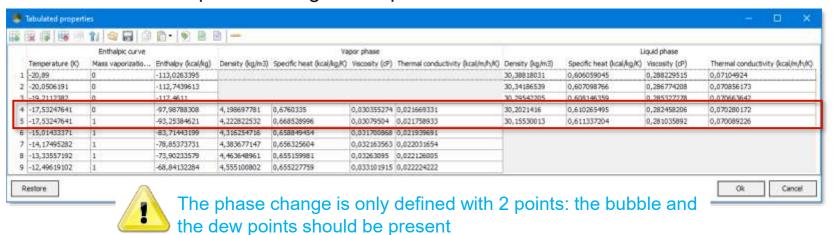

reperature (K) Mass vaporization ratio Enthalpy (kcal/kg) Density (kg/m3) Specific heat (1/kg/K) Viscosity (cP) Thermal conductivity (kcal/m/h/K) Density (kg/m3) Specific heat (1/kg/K) Viscosity (cP) Thermal conductivity (kcal/m/h/K)

Step 1 Generation of the tabulated thermodynamic data

- Pressure effect not taken into account on the enthalpy curves
 - Single vapor phase example

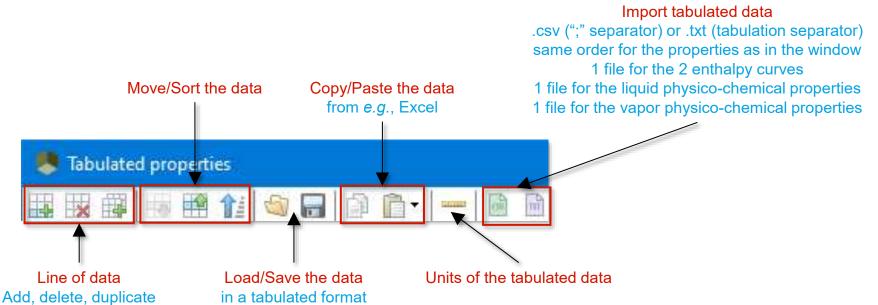


Single liquid phase example



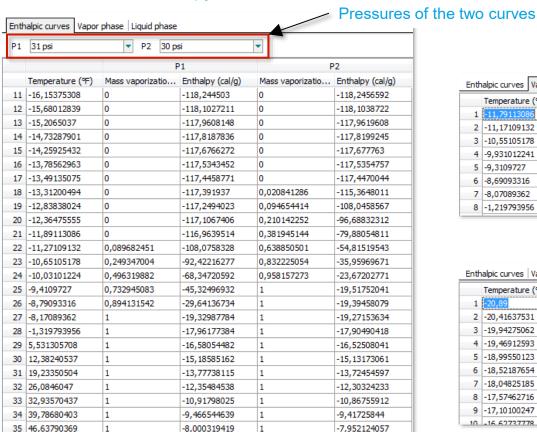
Step 1 Generation of the tabulated thermodynamic data

- Pressure effect not taken into account on the enthalpy curves
 - Two-phase vapor-liquid mixture example



Pure fluid with phase change example

Step 1 Generation of the tabulated thermodynamic data


- Pressure effect taken into account on the enthalpy curves
 - Data needed
 - √ Two enthalpy curves (temperature, mass enthalpy, mass vaporization ratio) at two
 different pressures
 - ✓ One table at one pressure for the vapor physico-chemical properties
 - ✓ One table at one pressure for the liquid physico-chemical properties
 - Same temperature tabulation for the two enthalpy curves
 - Warning messages appear in "Historic" report if there are extrapolations out of the pressure and/or temperature tabulated range

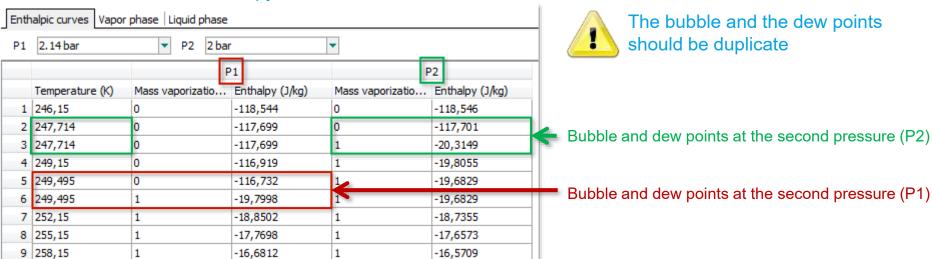
Step 1 Generation of the tabulated thermodynamic data

- Pressure effect taken into account on the enthalpy curves
 - Two phases liquid-vapor mixture example

Enthalpy curves

Vapor phase properties

Enth	Enthalpic curves Vapor phase Liquid phase										
	Temperature (°F) Density (lb/ft3) Specific heat (cal/g/K) Viscosity (lb/ft/h) Thermal conductivity (Btu/ft/h/F)										
1	-11,79113086	0,297904363	0,356530118	0,016674929	0,008263497						
2	-11,17109132	0,298855359	0,35664208	0,016664042	0,008261534						
3	-10,55105178	0,299683754	0,356780571	0,016656702	0,008261517						
4	-9,931012241	0,300228797	0,356974475	0,016657624	0,008265785						
5	-9,3109727	0,30047886	0,357225556	0,016667153	0,008274467						
6	-8,69093316	0,300589321	0,35750564	0,016680716	0,008285262						
7	-8,07089362	0,30056084	0,35780032	0,016697048	0,008297966						
8	-1,219793956	0,295325409	0,361203169	0,016954609	0,008503583						


Liquid phase properties

Enth	alpic curves Vapor	phase Liquid phase			
	Temperature (°F)	Density (lb/ft3)	Specific heat (cal/g/K)	Viscosity (lb/ft/h)	Thermal conductivity (Btu/ft/h/F)
1	-20,89	34,94651041	0,533971235	0,412323787	0,073138864
2	-20,41637531	34,92588954	0,534427338	0,41112319	0,073039515
3	-19,94275062	34,90525913	0,534884999	0,409927092	0,072940318
4	-19,46912593	34,88461907	0,535344225	0,408735465	0,072841273
5	-18,99550123	34,86396925	0,535805022	0,407548283	0,07274238
6	-18,52187654	34,84330957	0,536267394	0,406365519	0,072643639
7	-18,04825185	34,82263992	0,536731349	0,405187146	0,072545049
8	-17,57462716	34,80196018	0,537196892	0,404013138	0,072446609
9	-17,10100247	34,78127025	0,537664029	0,402843469	0,072348321
10	-16 62737778	34 76057002	0 538132766	0.401678113	0.072250182

Step 1 Generation of the tabulated thermodynamic data

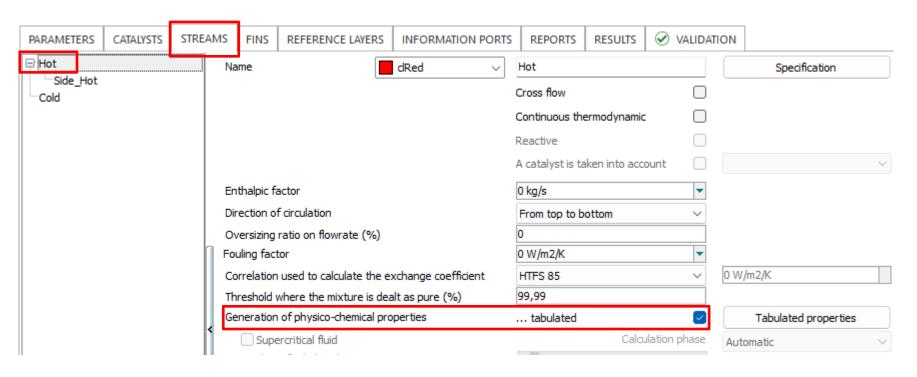
- Pressure effect taken into account on the enthalpy curves
 - Pure fluid with phase change example

Enthalpy curves

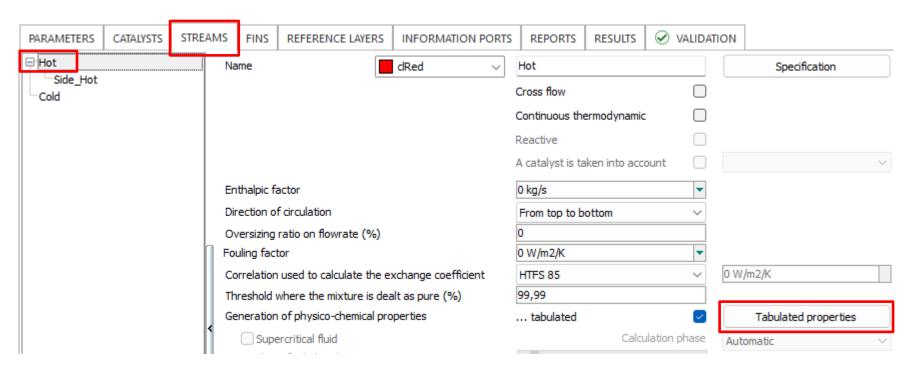
Vapor phase properties

Enth	alpic curves	Vapor pl	hase	Liquid phase			
	Temperature	(°F) [Densit	y (lb/ft3)	Specific heat (cal/g/K)	Viscosity (lb/ft/h)	Thermal conductivity (Btu/ft/h/F)
1	-11,79113086	(,2979	04363	0,356530118	0,016674929	0,008263497
2	-11,17109132	2 0	,2988	55359	0,35664208	0,016664042	0,008261534
3	-10,55105178	3 0	,2996	83754	0,356780571	0,016656702	0,008261517
4	-9,931012241	1 0	,3002	28797	0,356974475	0,016657624	0,008265785
5	-9,3109727	0	,3004	7886	0,357225556	0,016667153	0,008274467
6	-8,69093316	0	,3005	89321	0,35750564	0,016680716	0,008285262
7	-8,07089362	0	,3005	6084	0,35780032	0,016697048	0,008297966
8	-1,219793956	5 0	,2953	25409	0,361203169	0,016954609	0,008503583

Liquid phase properties

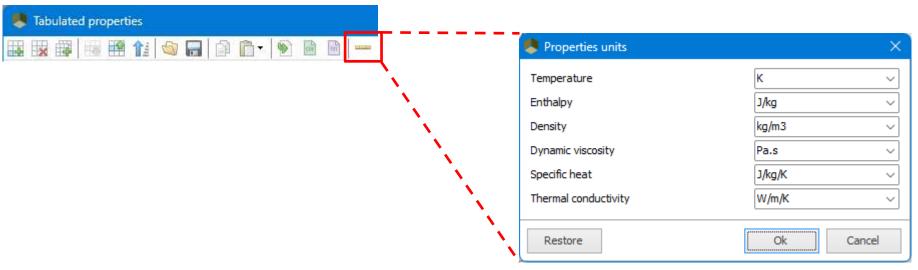

Enth	alpic curves Vapor	phase Liquid phase	:		
	Temperature (°F)	Density (lb/ft3)	Specific heat (cal/g/K)	Viscosity (lb/ft/h)	Thermal conductivity (Btu/ft/h/F)
1	-20,89	34,94651041	0,533971235	0,412323787	0,073138864
2	-20,41637531	34,92588954	0,534427338	0,41112319	0,073039515
3	-19,94275062	34,90525913	0,534884999	0,409927092	0,072940318
4	-19,46912593	34,88461907	0,535344225	0,408735465	0,072841273
5	-18,99550123	34,86396925	0,535805022	0,407548283	0,07274238
6	-18,52187654	34,84330957	0,536267394	0,406365519	0,072643639
7	-18,04825185	34,82263992	0,536731349	0,405187146	0,072545049
8	-17,57462716	34,80196018	0,537196892	0,404013138	0,072446609
9	-17,10100247	34,78127025	0,537664029	0,402843469	0,072348321
10	-16 62737778	34 76057002	0 538132766	0.401678113	0.072250182

Step 1 Generation of the tabulated thermodynamic data

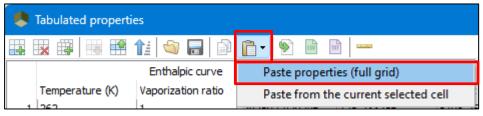

- Generate tabulated thermodynamic data in a tool external to ProSec
- For example, by using Simulis[®] Thermodynamics in Microsoft[®] Excel (see the step-by-step guide "Getting started with Simulis[®] Thermodynamics. Use case 1: Main features overview")

	Simulis Calculator		Р		69,4	bar				
	SC1							Vanor	phase	
Name	Calc!SC1		Т		Vap. ratio	Н	ρ	Ср	λ	
Humo	Cuic.Co i		K		wt./wt.	J/kg	kg/m3	J/kg/K	μ Pa.s	W/m/K
				262	1	-242592,420246	125,233756	5108.256591	1.425222E-05	0.041303
	Uı	nit		264	1	-232729,077692	120,205386	4766,948477	1,404855E-05	0,040822
Quantity	Data	Results		266	1	-223482,982719	115,788987	4488,259795	1,388795E-05	0,040446
Temperature	K	K		268	1	-214743,942691	111,866380	4257,836894	1,376014E-05	0,040152
Pressure	bar	bar		270	1	-206426,643980	108,348360	4064,991132	1,365790E-05	0,039922
Mass enthalpy	J/kg	J/kg		272	1	-198464,271619	105,166568	3901,770752	1,357599E-05	0,039746
Density	kg/m3	kg/m3		274	1	-190803,816148	102,267793	3762,215064	1,351056E-05	0,039614
Mass entropy	J/kg/K	J/kg/K		276	1	-183402,670196	99,609994	3641,805693	1,345870E-05	0,039518
Dynamic viscosity	Pa.s	Pa.s		278	1	-176226,158097	97,159489	3537,074675	1,341956E-05	0,039479
Thermal conductivity	W/m/K	W/m/K		280	1	-169245,728898	94,888945	3445,326489	1,338999E-05	0,039467
				282	1	-162437,620371	92,775917	3364,440228	1,336857E-05	0,039478
				284	1	-155781,859462	90,801782	3292,727637	1,335417E-05	0,039508
	Sc	ale		286	1	-149261,505345	88,950935	3228,830160	1,334584E-05	0,039556
Data	1	wt./wt.		288	1	-142862,069365	87,210183	3171,643419	1,334282E-05	0,039619
Results	1	wt./wt.		290	1	-136571,065448	85,568282	3120,261173	1,334446E-05	0,039696
				292	1	-130377,657864	84,015581	3073,933250	1,335023E-05	0,039786
				294	1	-124272,382452	82,543736	3032,033620	1,335966E-05	0,039887
		Z		296	1	-118246,923885	81,145491	2994,035910	1,337238E-05	0,039998
Index	Compound	wt./wt.		298	1	-112293,936109	79,814498	2959,494437	1,338803E-05	0,040120
1	METHANE	0,5		300	1	-106406,896394	78,545174	2928,029375	1,340634E-05	0,040250
2	ETHANE	0,5		302	1	-100579,985769	77,332587	2899,315060	1,342706E-05	0,040388
				304	1	-94807,990361	76,172355	2873,070675	1,344994E-05	0,040534

- Open (edit) ProSec unit operation
- Go to "Streams" tab
- Select the stream "Hot"
 - 1. Activate the option "Generation of physico-chemical properties ... tabulated"



- Select the stream "Hot"
 - 2. Click on the button "Tabulated properties"



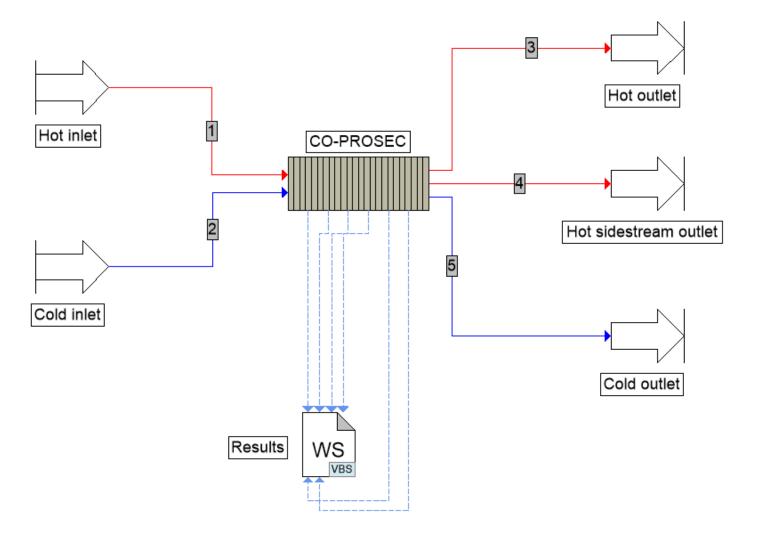
- Select the stream "Hot"
 - Click on the icon "Edit units"
 - 4. Select the units chosen during the generation of the tabulated thermodynamic data (step 1), for this example:

0	Temperature	K
0	Enthalpy	J/kg
0	Sensity	kg/m3
0	Dynamic viscosity	Pa.s
0	Specific heat	J/kg/K
0	Thermal conductivity	W/m/K

- Select the stream "Hot"
 - 5. Enter or copy the tabulated data. For example, once copied from Microsoft® Excel (ctrl + C), the icon "paste properties (full grid)" allows to copy them directly in the window "Tabulated properties"

	× 🖷 🖦 📫	11: 🟐 🔚 🗊	□ ▼	ш							
		Enthalpic curve			Vapor	phase			Liquid	d phase	
	Temperature (K)	Vaporization ratio	Enthalpy (J/kg)	Density (kg/m3)	Specific heat (J/k	Viscosity (Pa.s)	Thermal conducti	Density (kg/m3)	Specific heat (J/k	Viscosity (Pa.s)	Then
1	262	1	-242592,420246	125,233756	5108,256591	1,425222E-5	0,041303				
2	264	1	-232729,077692	120,205386	4766,948477	1,404855E-5	0,040822				
3	266	1	-223482,982719	115,788987	4488,259795	1,388795E-5	0,040446				
4	268	1	-214743,942691	111,86638	4257,836894	1,376014E-5	0,040152				
5	270	1	-206426,64398	108,34836	4064,991132	1,36579E-5	0,039922				
6	272	1	-198464,271619	105,166568	3901,770752	1,357599E-5	0,039746				
7	274	1	-190803,816148	102,267793	3762,215064	1,351056E-5	0,039614				
8	276	1	-183402,670196	99,609994	3641,805693	1,34587E-5	0,039518				
9	278	1	-176226,158097	97,159489	3537,074675	1,341956E-5	0,039479				
10	280	1	-169245,728898	94,888945	3445,326489	1,338999E-5	0,039467				
11	282	1	-162437,620371	92,775917	3364,440228	1,336857E-5	0,039478				
12	284	1	-155781,859462	90,801782	3292,727637	1,335417E-5	0,039508				
13	286	1	-149261,505345	88,950935	3228,83016	1,334584E-5	0,039556				
14	288	1	-142862,069365	87,210183	3171,643419	1,334282E-5	0,039619				
15	290	1	-136571,065448	85,568282	3120,261173	1,334446E-5	0,039696				
16	292	1	-130377,657864	84,015581	3073,93325	1,335023E-5	0,039786				
17	294	1	-124272,382452	82,543736	3032,03362	1,335966E-5	0,039887				
18	296	1	-118246,923885	81,145491	2994,03591	1,337238E-5	0,039998				
19	298	1	-112293,936109	79,814498	2959,494437	1,338803E-5	0,04012				
20	300	1	-106406,896394	78,545174	2928,029375	1,340634E-5	0,04025				
21	302	1	-100579,985769	77,332587	2899,31506	1,342706E-5	0,040388				
22	304	1	-94807,990361	76,172355	2873,070675	1,344994E-5	0,040534				

025 Fives ProSim S.A.S. - All rights res


- Select the stream "Hot"
 - 6. Validate all windows
 - 7. Follow the same procedure for the stream "Cold"
 - 8. Save the file before running the simulation

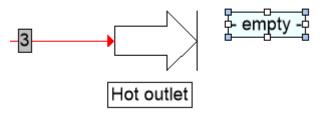
Step 3 **Export of ProSec results**

- Add outlet information ports to store the temperatures and vaporization rates of the outlets (hot fluid, side-stream of the hot fluid, and cold fluid) in a Windows Script module to display them via tags.
- The step-by-step guide of ProSec in the ProSimPlus environment "Import/export parameters/results, use case study capability, define a specification" describes how to export results.

Step 3 Export of ProSec results

Simulation flowsheet at the end of the step 3

- Tags are used to display information of the simulation directly on the simulation flowsheet (for example: input data and/or results of unit operations and streams).
- For this example, the objective is to display the following results:
 - Outlet temperatures and vaporization ratios calculated by ProSec
 - Temperatures and vaporization ratios displayed in ProSimPlus streams

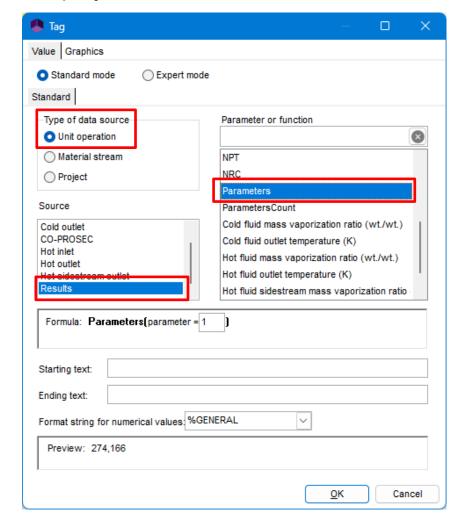

Display results with tags

Step 4

- The results calculated by ProSec to be displayed are stored in the Windows Script module.
 - Click on the icon "Add a tag"

Click on the simulation flowsheet to place the tag

Step 4 Display results with tags


The results calculated by ProSec to be displayed are stored in the

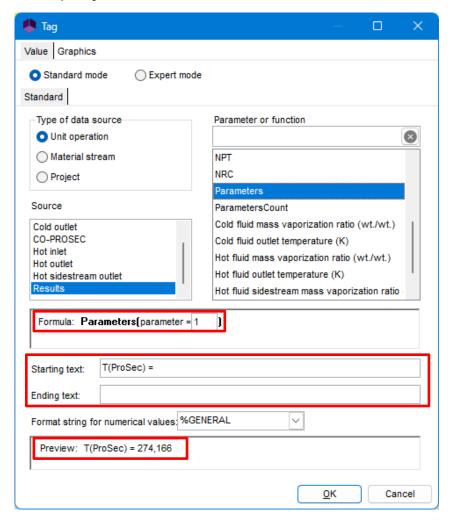
Windows Script module.

Double-click on the tag

Select "Unit operation" as type of data source

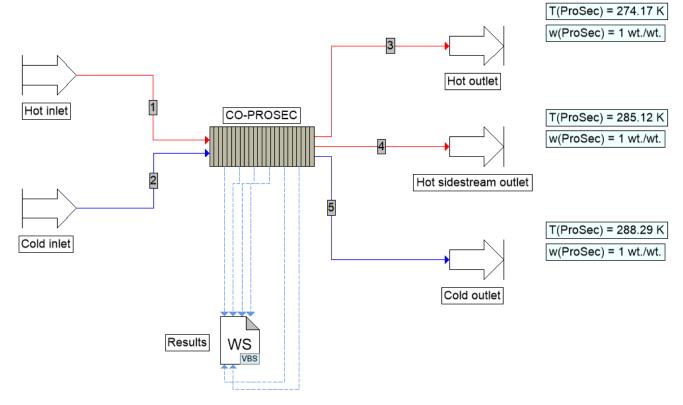
- b) Select the Windows Script module in the "Source" list, here "Results"
- c) Select "Parameters" in the "Parameter or function" list

Step 4 Display results with tags

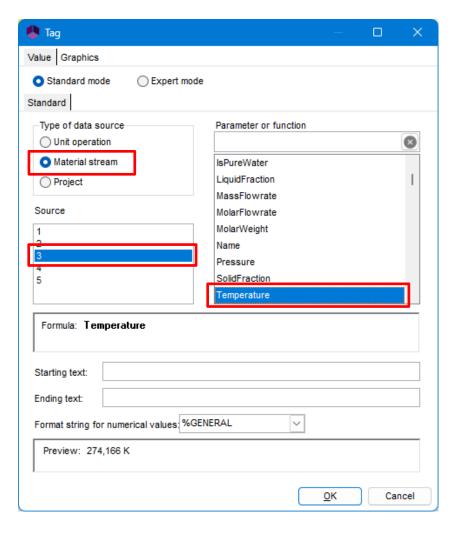

The results calculated by ProSec to be displayed are stored in the

Windows Script module.

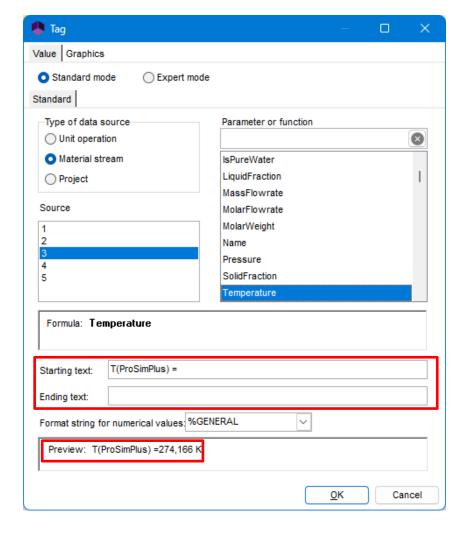
Double-click on the tag

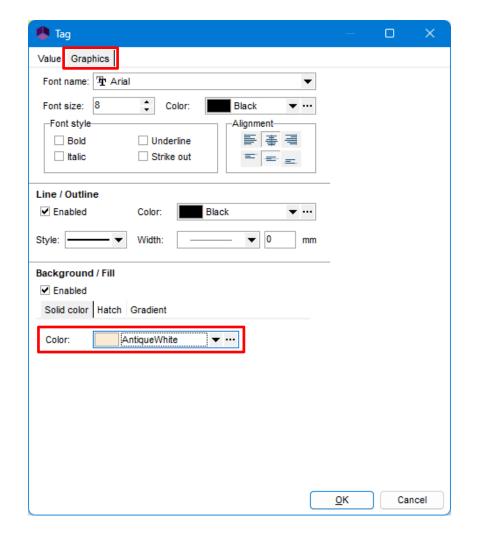

d) Select the number of the parameter to display. It's the position of the parameter in the "PAR" zone of the Windows Script module.

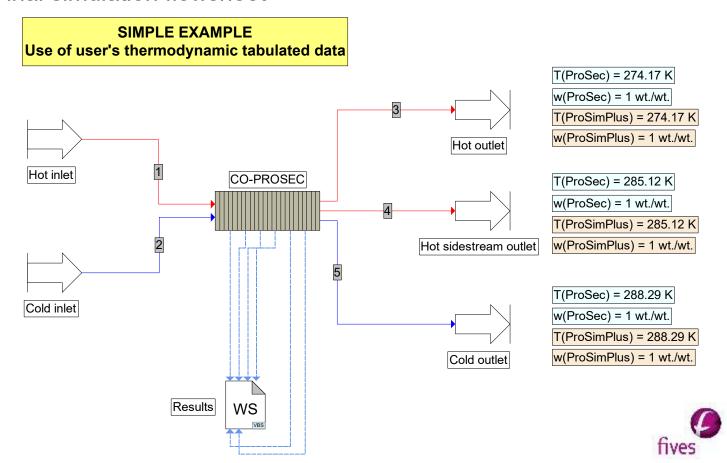
- e) It's possible to add a text before and/or after the value to display.
- f) A preview is available.
- 4. Click on "OK" to validate the specified parameters.



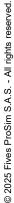
s ProSim S.A.S. - All rights reserved.


- The results calculated by ProSec to be displayed are stored in the Windows Script module.
 - 5. Repeat the previous procedure to display the other results calculated by ProSec.
- Simulation flowsheet at this point


- Display the results of ProSimPlus streams
 - 1. Add a new tag
 - 2. Place the tag on the flowsheet
 - Double-click on the tag
 - a) Select "Material stream" as type of data source
 - b) Select one of the stream of interest. Here the stream"3", stream of the hot outlet
 - c) Select "Temperature" in the "Parameter or function" list


- Display the results of ProSimPlus streams
 - Double-click on the tag
 - d) It's possible to add a text before and/or after the value to display.
 - e) A preview is available.

- Display the results of ProSimPlus streams
 - Double-click on the tag
 - f) The "Graphics" tab allows to change the visual aspect of the tags to differentiate them for example.
 - Click on "OK" to validate the specified parameters.



- Display the results of ProSimPlus streams
 - Repeat the previous procedure to display the results calculated for the other ProSimPlus streams of interest.
- Final simulation flowsheet

Analysis of the results

- In this example, the temperatures and vaporization rates calculated in the ProSimPlus streams are the same as those calculated in ProSec module.
- Possible differences can be explained by: :
 - Differences between the thermodynamic profile used to tabulate the thermodynamic data and the one selected in the host software (different compounds, different compositions, different models, etc.).
 - By default, ProSec calculations are isobaric to the inlet pressure. Pressure
 drops, i.e. outlet pressures, are calculated after the thermal resolution. ProSec
 transmits the enthalpies and pressures of the outlet streams to the host
 software. If the pressure drops are important, a deviation may then appear (the
 calculations of the host software being made at a pressure different from that of
 ProSec).

Fives ProSim S.A.S.

51, rue Ampère Immeuble Stratège A F-31670 Labège **France**

Tel: +33 (0) 5 62 88 24 30

ProSim, Inc. 325 Chestnut Street, Suite 800 Philadelphia, PA 19106 USA

Tel: +1 215 600 3759

www.fives-prosim.com

fives-prosim.info@fivesgroup.com